Proceedings of the 4th International Conference on Gettering and Defect Engineering In Semiconductor Technology (GADEST '91), Frankfurt, Germany, October 1991
GADEST 1997 Proceedings of the 7th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology (GADEST '97), Spa, Belgium, October 1997
GADEST 2013 Selected, peer reviewed papers from the 15th Gettering and Defect Engineering in Semiconductor Technology (GADEST 2013), September 22-27, 2013, Oxford, UK
Gettering Defects in Semiconductors fulfills three basic purposes: – to systematize the experience and research in exploiting various gettering techniques in microelectronics and nanoelectronics; – to identify new directions in research, particularly to enhance the perspective of professionals and young researchers and specialists; – to fill a gap in the contemporary literature on the underlying semiconductor-material theory. The authors address not only well-established gettering techniques but also describe contemporary trends in gettering technologies from an international perspective. The types and properties of structural defects in semiconductors, their generating and their transforming mechanisms during fabrication are described. The primary emphasis is placed on classifying and describing specific gettering techniques, their specificity arising from both their position in a general technological process and the regimes of their application. This book addresses both engineers and material scientists interested in semiconducting materials theory and also undergraduate and graduate students in solid–state microelectronics and nanoelectronics. A comprehensive list of references provides readers with direction for further reading.
Selected, peer reviewed papers from the GADEST 2015: Gettering and Defect Engineering in Semiconductor Technology, September 20-25, 2015, Bad Staffelstein, Germany
Proceedings of the San Francisco meeting of April-May 1992. Papers emphasize deliberate and controlled introduction and manipulation of defects in order to engineer some desired properties in semiconductor materials and devices. Topics include: defects in bulk crystals, and in thin films; defect characterization; hydrogen interaction; processing induction of defects; quantum wells; ion implantation. Annotation copyright by Book News, Inc., Portland, OR
This book contains the first comprehensive review of intrinsic point defects, impurities and their complexes in silicon. Besides compiling the structures, energetic properties, identified electrical levels and spectroscopic signatures, and the diffusion behaviour from investigations, it gives a comprehensive introduction into the relevant fundamental concepts.
This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen. - Comprehensive study of the behavior of oxygen in silicon - Discusses silicon crystals for VLSI and ULSI applications - Thorough coverage from crystal growth to device fabrication - Edited by technical experts in the field - Written by recognized authorities from industrial and academic institutions - Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research - 297 original line drawings