Geochemical Modeling of Groundwater, Vadose and Geothermal Systems

Geochemical Modeling of Groundwater, Vadose and Geothermal Systems

Author: Jochen Bundschuh

Publisher: CRC Press

Published: 2011-12-23

Total Pages: 336

ISBN-13: 0415668107

DOWNLOAD EBOOK

Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, hydrocarbon geology, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through its discussion of geochemical modeling, which simulates the chemical and physical processes affecting the distribution of chemical species in liquid, gas, and solid phases. Geochemical modeling applies to a diversity of subsurface environments, from the vadose zone close to the Earth’s surface, down to deep-seated geothermal reservoirs. This book provides the fundamental thermodynamic concepts of liquid-gas-solid phase systems. It introduces the principal types of geochemical models, such as speciation, reaction-path or forward, inverse- and reactive-transport models, together with examples of the most common codes and the best-practices for constructing geochemical models. The physical laws describing homogeneous and heterogeneous chemical reactions, their kinetics, and the transport of reactive solutes are presented. The partial differential or algebraic equations representing these laws, and the principal numerical methods that allow approximate solutions of these equations that can provide useful solutions to model different geochemical processes, are discussed in detail. Case studies applying geochemical models in different scientific areas and environmental settings, conclude the book. The book is addressed to students, teachers, other professionals, and to the institutions involved in water, geothermal and hydrocarbon resources, mining, and environmental management. The book should prove useful to undergraduate and graduate students, postgraduates, professional geologists and geophysicists, engineers, environmental scientists, soil scientists, hydrochemists, and others interested in water and geochemistry.


Low-Enthalpy Geothermal Resources for Power Generation

Low-Enthalpy Geothermal Resources for Power Generation

Author: D. Chandrasekharam

Publisher: CRC Press

Published: 2008-07-01

Total Pages: 170

ISBN-13: 1134144385

DOWNLOAD EBOOK

In many developing countries the exponentially growing electricity demand can be covered by using locally available, sustainable low-enthalpy geothermal resources (80-150 °C). Such low-enthalpy sources can make electricity generation more independent from oil imports or from the over-dependence on hydropower. Until now this huge energy resource has only been used by some developed countries like the USA, Iceland and New Zealand. The reason why low-enthalpy geothermal resources are not used for electricity generation is that there is still a misconception that low-enthalpy thermal fluids are fit only for direct application. The advancement of drilling technology, development of efficient heat exchangers and deployment of high sensitive binary fluids contribute to the useful application of this energy resource on a much wider scale. This book focuses on all aspects of low enthalpy geothermal thermal fluids. It will be an important source book for all scientists working on geothermal energy development. Specifically those involved in research in developing countries rich in such thermal resources, and for agencies involved in bilateral and international cooperation.


Thermal Energy

Thermal Energy

Author: Yatish T. Shah

Publisher: CRC Press

Published: 2018-01-12

Total Pages: 854

ISBN-13: 1315305941

DOWNLOAD EBOOK

The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.