George Green: Mathematician and Physicist, 1793-1841

George Green: Mathematician and Physicist, 1793-1841

Author: D. M. Cannell

Publisher: SIAM

Published: 2001-01-01

Total Pages: 365

ISBN-13: 9780898718102

DOWNLOAD EBOOK

Mathematicians and lay people alike will enjoy this fascinating book that details the life of George Green, a pioneer in the application of mathematics to physical problems. Green was a mathematical physicist who spent most of the first 40 years of his life working not as a physicist but as a miller in his father's grain mill. Green received only four terms of formal schooling, and at the age of nine he had surpassed his teachers. Green studied mathematics in his spare time and in 1828 published his most famous work, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. It was in this essay that the famous Green's Theorem and Green's functions first appeared. Although this work was largely ignored during his lifetime, it is now considered of major importance in modern physics.


Galileo Unbound

Galileo Unbound

Author: David D. Nolte

Publisher: Oxford University Press

Published: 2018-07-12

Total Pages: 384

ISBN-13: 0192528505

DOWNLOAD EBOOK

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.


Symbols and Things

Symbols and Things

Author: Kevin Lambert

Publisher: University of Pittsburgh Press

Published: 2021-10-12

Total Pages: 301

ISBN-13: 0822988410

DOWNLOAD EBOOK

In the steam-powered mechanical age of the eighteenth and nineteenth centuries, the work of late Georgian and early Victorian mathematicians depended on far more than the properties of number. British mathematicians came to rely on industrialized paper and pen manufacture, railways and mail, and the print industries of the book, disciplinary journal, magazine, and newspaper. Though not always physically present with one another, the characters central to this book—from George Green to William Rowan Hamilton—relied heavily on communication technologies as they developed their theories in consort with colleagues. The letters they exchanged, together with the equations, diagrams, tables, or pictures that filled their manuscripts and publications, were all tangible traces of abstract ideas that extended mathematicians into their social and material environment. Each chapter of this book explores a thing, or assembling of things, mathematicians needed to do their work—whether a textbook, museum, journal, library, diagram, notebook, or letter—all characteristic of the mid-nineteenth-century British taskscape, but also representative of great change to a discipline brought about by an industrialized world in motion.


John Clare Society Journal, 22 (2003)

John Clare Society Journal, 22 (2003)

Author: Gillian Hughes

Publisher: John Clare Society

Published: 2003-07-13

Total Pages: 100

ISBN-13: 9780953899524

DOWNLOAD EBOOK

The official Journal of the John Clare Society, published annually to reflect the interest in, and approaches to, the life and work of the poet John Clare.


Solving Numerical PDEs: Problems, Applications, Exercises

Solving Numerical PDEs: Problems, Applications, Exercises

Author: Luca Formaggia

Publisher: Springer Science & Business Media

Published: 2012-04-05

Total Pages: 439

ISBN-13: 8847024129

DOWNLOAD EBOOK

This book stems from the long standing teaching experience of the authors in the courses on Numerical Methods in Engineering and Numerical Methods for Partial Differential Equations given to undergraduate and graduate students of Politecnico di Milano (Italy), EPFL Lausanne (Switzerland), University of Bergamo (Italy) and Emory University (Atlanta, USA). It aims at introducing students to the numerical approximation of Partial Differential Equations (PDEs). One of the difficulties of this subject is to identify the right trade-off between theoretical concepts and their actual use in practice. With this collection of examples and exercises we try to address this issue by illustrating "academic" examples which focus on basic concepts of Numerical Analysis as well as problems derived from practical application which the student is encouraged to formalize in terms of PDEs, analyze and solve. The latter examples are derived from the experience of the authors in research project developed in collaboration with scientists of different fields (biology, medicine, etc.) and industry. We wanted this book to be useful both to readers more interested in the theoretical aspects and those more concerned with the numerical implementation.