Geometry: from Isometries to Special Relativity

Geometry: from Isometries to Special Relativity

Author: Nam-Hoon Lee

Publisher: Springer Nature

Published: 2020-04-28

Total Pages: 264

ISBN-13: 3030421015

DOWNLOAD EBOOK

This textbook offers a geometric perspective on special relativity, bridging Euclidean space, hyperbolic space, and Einstein’s spacetime in one accessible, self-contained volume. Using tools tailored to undergraduates, the author explores Euclidean and non-Euclidean geometries, gradually building from intuitive to abstract spaces. By the end, readers will have encountered a range of topics, from isometries to the Lorentz–Minkowski plane, building an understanding of how geometry can be used to model special relativity. Beginning with intuitive spaces, such as the Euclidean plane and the sphere, a structure theorem for isometries is introduced that serves as a foundation for increasingly sophisticated topics, such as the hyperbolic plane and the Lorentz–Minkowski plane. By gradually introducing tools throughout, the author offers readers an accessible pathway to visualizing increasingly abstract geometric concepts. Numerous exercises are also included with selected solutions provided. Geometry: from Isometries to Special Relativity offers a unique approach to non-Euclidean geometries, culminating in a mathematical model for special relativity. The focus on isometries offers undergraduates an accessible progression from the intuitive to abstract; instructors will appreciate the complete instructor solutions manual available online. A background in elementary calculus is assumed.


Semi-Riemannian Geometry With Applications to Relativity

Semi-Riemannian Geometry With Applications to Relativity

Author: Barrett O'Neill

Publisher: Academic Press

Published: 1983-07-29

Total Pages: 483

ISBN-13: 0080570577

DOWNLOAD EBOOK

This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.


Semi-Riemannian Geometry

Semi-Riemannian Geometry

Author: Stephen C. Newman

Publisher: John Wiley & Sons

Published: 2019-07-30

Total Pages: 656

ISBN-13: 1119517532

DOWNLOAD EBOOK

An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.


Special Relativity

Special Relativity

Author: Michael Tsamparlis

Publisher: Springer Science & Business Media

Published: 2010-05-17

Total Pages: 605

ISBN-13: 3642038379

DOWNLOAD EBOOK

Writing a new book on the classic subject of Special Relativity, on which numerous important physicists have contributed and many books have already been written, can be like adding another epicycle to the Ptolemaic cosmology. Furthermore, it is our belief that if a book has no new elements, but simply repeats what is written in the existing literature, perhaps with a different style, then this is not enough to justify its publication. However, after having spent a number of years, both in class and research with relativity, I have come to the conclusion that there exists a place for a new book. Since it appears that somewhere along the way, mathem- ics may have obscured and prevailed to the degree that we tend to teach relativity (and I believe, theoretical physics) simply using “heavier” mathematics without the inspiration and the mastery of the classic physicists of the last century. Moreover current trends encourage the application of techniques in producing quick results and not tedious conceptual approaches resulting in long-lasting reasoning. On the other hand, physics cannot be done a ́ la carte stripped from philosophy, or, to put it in a simple but dramatic context A building is not an accumulation of stones! As a result of the above, a major aim in the writing of this book has been the distinction between the mathematics of Minkowski space and the physics of r- ativity.


Applicable Differential Geometry

Applicable Differential Geometry

Author: M. Crampin

Publisher: Cambridge University Press

Published: 1986

Total Pages: 408

ISBN-13: 9780521231909

DOWNLOAD EBOOK

An introduction to geometrical topics used in applied mathematics and theoretical physics.


An Introduction to General Relativity

An Introduction to General Relativity

Author: L. P. Hughston

Publisher: Cambridge University Press

Published: 1990

Total Pages: 196

ISBN-13: 9780521339438

DOWNLOAD EBOOK

This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.


Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity

Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity

Author: Abraham Albert Ungar

Publisher: World Scientific

Published: 2008-02-11

Total Pages: 649

ISBN-13: 9814474010

DOWNLOAD EBOOK

This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors.Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative. The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami-Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, Möbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincaré ball model of hyperbolic geometry.In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion.The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry.


Relativity on Curved Manifolds

Relativity on Curved Manifolds

Author: F. de Felice

Publisher: Cambridge University Press

Published: 1992-03-27

Total Pages: 466

ISBN-13: 9780521429085

DOWNLOAD EBOOK

This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurement on curved manifolds.


Ideas of Space

Ideas of Space

Author: Jeremy Gray

Publisher: Oxford University Press on Demand

Published: 1989

Total Pages: 242

ISBN-13: 9780198539353

DOWNLOAD EBOOK

The history of the development of Euclidean, non-Euclidean, and relativistic ideas of the shape of the universe, is presented in this lively account by Jeremy Gray. The parallel postulate of Euclidean geometry occupies a unique position in the history of mathematics. In this book, Jeremy Gray reviews the failure of classical attempts to prove the postulate and then proceeds to show how the work of Gauss, Lobachevskii, and Bolyai, laid the foundations ofmodern differential geometry, by constructing geometries in which the parallel postulate fails. These investigations in turn enabled the formulation of Einstein's theories of special and general relativity, which today form the basis of our conception of the universe. The author has made every attempt to keep the pre-requisites to a bare minimum. This immensely readable account, contains historical and mathematical material which make it suitable for undergraduate students in the history of science and mathematics. For the second edition, the author has taken the opportunity to update much of the material, and to add a chapter on the emerging story of the Arabic contribution to this fascinating aspect of the history of mathematics.


Special Relativity, Electrodynamics, and General Relativity

Special Relativity, Electrodynamics, and General Relativity

Author: John B. Kogut

Publisher: Academic Press

Published: 2018-01-09

Total Pages: 456

ISBN-13: 0128137215

DOWNLOAD EBOOK

Special Relativity, Electrodynamics, and General Relativity: From Newton to Einstein is intended to teach students of physics, astrophysics, astronomy, and cosmology how to think about special and general relativity in a fundamental but accessible way. Designed to render any reader a "master of relativity, all material on the subject is comprehensible and derivable from first principles. The book emphasizes problem solving, contains abundant problem sets, and is conveniently organized to meet the needs of both student and instructor. - Fully revised and expanded second edition with improved figures - Enlarged discussion of dynamics and the relativistic version of Newton's second law - Resolves the twin paradox from the principles of special and general relativity - Includes new chapters which derive magnetism from relativity and electrostatics - Derives Maxwell's equations from Gauss' law and the principles of special relativity - Includes new chapters on differential geometry, space-time curvature, and the field equations of general relativity - Introduces black holes and gravitational waves as illustrations of the principles of general relativity and relates them to the 2015 and 2017 observational discoveries of LIGO