Geometric Asymptotics

Geometric Asymptotics

Author: Victor Guillemin

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 500

ISBN-13: 0821816330

DOWNLOAD EBOOK

Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.


Differential Geometric Structures

Differential Geometric Structures

Author: Walter A. Poor

Publisher: Courier Corporation

Published: 2015-04-27

Total Pages: 356

ISBN-13: 0486151913

DOWNLOAD EBOOK

This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.


Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xx International Conference (In 2 Volumes)

Differential Geometric Methods In Theoretical Physics - Proceedings Of The Xx International Conference (In 2 Volumes)

Author: Sultan Catto

Publisher: World Scientific

Published: 1992-01-27

Total Pages: 1228

ISBN-13: 9814555509

DOWNLOAD EBOOK

This proceedings reports on some of the most recent advances on the interaction between Differential Geometry and Theoretical Physics, a very active and exciting area of contemporary research.The papers are grouped into the following four broad categories: Geometric Methods, Noncommutative Geometry, Quantum Gravity and Topological Quantum Field Theory. A few of the topics covered are Chern-Simons Theory and Generalizations, Knot Invariants, Models of 2D Gravity, Quantum Groups and Strings on Black Holes.


Wavefronts and Rays as Characteristics and Asymptotics

Wavefronts and Rays as Characteristics and Asymptotics

Author: Andrej B¢na

Publisher: World Scientific

Published: 2011

Total Pages: 295

ISBN-13: 9814295515

DOWNLOAD EBOOK

This textbook ? incorporated with many illuminating examples and exercises ? is aimed at graduate students of physical sciences and engineering. The purpose is to provide a background of physics and underlying mathematics for the concept of rays, filling the gap between mathematics and physics textbooks for a coherent treatment of all topics. The authors' emphasis and extremely good presentation of the theory of characteristics, which defines the rays, accentuate the beauty and versatility of this theory. To this end, the rigour of the formulation ? by a pure mathematician's standards ? is downplayed to highlight the physical meaning and to make the subject accessible to a wider audience. The authors describe in detail the theory of characteristics for different types of differential equations, the applications to wave propagation in different types of media, and the phenomena such as caustics.


Geometric Quantization

Geometric Quantization

Author: Nicholas Michael John Woodhouse

Publisher: Oxford University Press

Published: 1992

Total Pages: 324

ISBN-13: 9780198502708

DOWNLOAD EBOOK

The geometric approach to quantization was introduced by Konstant and Souriau more than 20 years ago. It has given valuable and lasting insights into the relationship between classical and quantum systems, and continues to be a popular research topic. The ideas have proved useful in pure mathematics, notably in representation theory, as well as in theoretical physics. The most recent applications have been in conformal field theory and in the Jones-Witten theory of knots. The successful original edition of this book was published in 1980. Now it has been completely revised and extensively rewritten. The presentation has been simplified and many new examples have been added. The material on field theory has been expanded.


Hamiltonian and Gradient Flows, Algorithms and Control

Hamiltonian and Gradient Flows, Algorithms and Control

Author: Anthony Bloch

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 166

ISBN-13: 0821802550

DOWNLOAD EBOOK

This volume brings together ideas from several areas of mathematics that have traditionally been rather disparate. The conference at the Fields Institute which gave rise to these proceedings was intended to enourage such connections. One of the key interactions occurs between dynamical systems and algorithms, one example being the by now classic observation that the QR algorithm for diagonalizing matrices may be viewed as the time-1 map of the Toda lattice flow. Another link occurs with interior point methods for linear programming, where certain smooth flows associated with such programming problems have proved valuable in the analysis of the corresponding discrete problems. More recently, other smooth flows have been introduced which carry out discrete computations (such as sorting sets of numbers) and which solve certain least squares problems. Another interesting facet of the flows described here is that they often have a dual Hamiltonian and gradient structure, both of which turn out to be useful in analysing and designing algorithms for solving optimization problems. This volume explores many of these interactions, as well as related work in optimal control and partial differential equations.


Noncommutative Geometry

Noncommutative Geometry

Author: Alain Connes

Publisher: Gulf Professional Publishing

Published: 1994-11-22

Total Pages: 678

ISBN-13: 012185860X

DOWNLOAD EBOOK

This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. First full treatment of the subject and its applications Written by the pioneer of this field Broad applications in mathematics Of interest across most fields Ideal as an introduction and survey Examples treated include: the space of Penrose tilings the space of leaves of a foliation the space of irreducible unitary representations of a discrete group the phase space in quantum mechanics the Brillouin zone in the quantum Hall effect A model of space time


Basic Hypergeometric Series and Applications

Basic Hypergeometric Series and Applications

Author: Nathan Jacob Fine

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 142

ISBN-13: 0821815245

DOWNLOAD EBOOK

The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. This book provides a simple approach to basic hypergeometric series.


Geometric Quantization and Quantum Mechanics

Geometric Quantization and Quantum Mechanics

Author: Jedrzej Sniatycki

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 241

ISBN-13: 1461260663

DOWNLOAD EBOOK

This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.