February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index
This user-friendly reference for students and researchers presents the basic mathematical theory, before introducing modelling of key geodynamic processes.
While remote sensing gives a surface depiction of the world, its recent convergence with GIS enables richer depictions that can be used to simulate physical processes, identify trends, and make more accurate predictions. GeoDynamics is based on specialized lectures from an international field of experts, addressing remote sensing, spatially
Published by the American Geophysical Union as part of the Geodynamics Series, Volume 24. There are times in the history of a science when the evolving technology has been combined with a singleness of purpose to make possible the next great step. For space geodesy the decade of the 1980s was one of those times. Initiated in the early 1980s, the NASA Crustal Dynamics Project (CDP), a global venture of unprecedented proportions, exploited new technologies to confirm and refine tectonic theories and to advance geodynamics. The highlights of the efforts of scientists and engineers from some 30 countries are contained in the 54 papers collected in three volumes which are dedicated to the memory of Edward A. (Ted) Flinn, the former Chief Scientist of the NASA Geodynamics Program.
The Arctic zone of the Earth is a major source of mineral and other natural resources for the future development of science and technology. It contains a large supply of strategic mineral deposits, including rare earths, copper, phosphorus, niobium, platinum-group elements, and other critical metals. The continued melting of the sea ice due to climate change makes these resources more accessible than ever before. However, the mineral exploration in the Arctic has always been a challenge due to the climatic restrictions, remote location, and vulnerability of Arctic ecosystems. This book covers a broad range of topics related to the problem of Arctic mineral resources, including geological, geochemical, and mineralogical aspects of their occurrence and formation; chemical technologies; and environmental and economic problems related to mineral exploration. The contributions can be tentatively classified into four major types: geodynamics and metallogeny, mineralogy and petrology, mineralogy and crystallography, and mining and chemical technologies associated with the exploration of mineral deposits and the use of raw materials for manufacturing new products. The book can be of interest for all those interested in Arctic issues and especially in Arctic mineral resources and associated problems of mineralogy, geology, geochemistry, and technology.