Climate Change and Food Security with Emphasis on Wheat

Climate Change and Food Security with Emphasis on Wheat

Author: Munir Ozturk

Publisher: Academic Press

Published: 2020-04-03

Total Pages: 388

ISBN-13: 0128195673

DOWNLOAD EBOOK

Climate Change and Food Security with Emphasis on Wheat is the first book to present the full scope of research in wheat improvement, revealing the correlations to global issues including climate change and global warming which contribute to food security issues. Wheat plays a key role in the health of the global economy. As the world population continuously increases, economies modernize, and incomes rise, wheat production will have to increase dramatically to secure it as a reliable and sustainable food source. Since covering more land area with wheat crops is not a sustainable option, future wheat crops must have consistently higher yields and be able to resist and/or tolerate biotic and abiotic stresses that result from climate change. Addressing the biophysical and socioeconomic constraints of producing high-yielding, disease-resistant, and good quality wheat, this book will aid in research efforts to increase and stabilize wheat production worldwide. Written by an international team of experts, Climate Change and Food Security with Emphasis on Wheat is an excellent resource for academics, researchers, and students interested in wheat and grain research, especially as it is relevant to food security. - Covers a wide range of disciplines, including plant breeding, genetics, agronomy, physiology, pathology, quantitative genetics and genomics, biotechnology and gene editing - Explores the effect of climate change on biotic stresses (stripe rust, stem rust, leaf rust, Karnal bunt, spot blotch) on wheat production and utilization of biotechnology - Focuses on whole genome sequencing and next-generation sequencing technologies to improve wheat quality and address the issue of malnutrition in developing world


Advances in Conservation and Utilization of Plant Genetic Resources

Advances in Conservation and Utilization of Plant Genetic Resources

Author: Svein Øivind Solberg

Publisher: Frontiers Media SA

Published: 2024-08-20

Total Pages: 299

ISBN-13: 2832553346

DOWNLOAD EBOOK

Genetic diversity is the key to crop improvement and food security. There are more than 1500 gene banks around the world, and genetic resources are maintained in nature reserves and on farms. Genetic diversity serves as the starting point for breeding crops with improved nutritional quality, higher yields, and better tolerance to abiotic and biotic stresses. However, genetic diversity also provides opportunities for diversifying farm and food systems. Utilization depends on access to material and information. However, many gene banks experience backlogs in characterization, evaluation, regeneration, viability tests, plant health monitoring, and information sharing. This research topic focuses on advances in plant genetic resource conservation and utilization.


Wheat

Wheat

Author: Y. P. S. Bajaj

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 701

ISBN-13: 3662109336

DOWNLOAD EBOOK

Wheat, which is the second most important cereal crop in the world, is being grown in a wide range of climates over an area of about 228 945 thou sand ha with a production of about 535 842 MT in the world. Bread wheat (Triticum aestivum L. ) accounts for 80% of the wheat consumption, howe ver, it is attacked by a large number of pests and pathogens; rusts and smuts cause enormous damage to the crop and reduce the yield drastically in some areas. The major breeding objectives for wheat include grain yield, earliness, resistance to lodging and diseases, spikelet fertility, cold tolerance, leaf duration and net assimilation rate, fertilizer utilization, coleoptile length, nutritional value, organoleptic qualities, and the improvement of charac ters such as color and milling yield. The breeding of wheat by traditional methods has been practiced for centuries, however, it has only now come to a stage where these methods are insufficient to make any further breakthrough or to cope with the world's demand. Although numerous varieties are released every year around the world, they do not last long, and long-term objectives cannot be realized unless more genetic variability is generated. Moreover, the intro duction of exotic genetic stocks and their cultivation over large areas results in the depletion and loss of the native germplasm pool.


Abiotic Stresses in Wheat

Abiotic Stresses in Wheat

Author: Mohd. Kamran Khan

Publisher: Elsevier

Published: 2023-01-11

Total Pages: 454

ISBN-13: 0323958125

DOWNLOAD EBOOK

Abiotic Stresses in Wheat: Unfolding the Challenges presents the current challenges, possibilities, and advancements in research-based management strategies for the adaptation of wheat crops under abiotic-stressed growth conditions. This book comprehensively discusses different abiotic stress conditions in wheat, and also covers current trends in their mitigation using advanced tools to develop resilience in wheat crops. Chapters provide insight into the genetic, biochemical, physiological, molecular, and transgenic advances and emerging frontiers for mitigating the effects of wheat abiotic stresses. This text is the first resource to include all abiotic stresses in one volume, providing important translational insights and efficient comparison. - Describes advances in conventional and modern breeding approaches in countering the effect of wheat abiotic stresses - Highlights the role of physiological, biochemical and OMICS strategies - Includes coverage of biotechnological tools such as whole genome sequencing, nanotechnology, and genome editing


Genetically Modified Crops

Genetically Modified Crops

Author: P. B. Kavi Kishor

Publisher: Springer Nature

Published: 2020-11-03

Total Pages: 274

ISBN-13: 9811558973

DOWNLOAD EBOOK

Genetic transformation is a key technology, in which genes are transferred from one organism to another in order to improve agronomic traits and ultimately help humans. However, there is apprehension in some quarters that genetically modified crops may disturb the ecosystem. A number of non-governmental organizations continue to protest against GM crops and foods, despite the fact that many organisms are genetically modified naturally in the course of evolution. In this context, there is a need to educate the public about the importance of GM crops in terms of food and nutritional security. This book provides an overview of various crop plants where genetic transformation has been successfully implemented to improve their agronomically useful traits. It includes information on the gene(s) transferred, the method of gene transfer and the beneficial effects of these gene transfers and agronomic improvements compared to the wild plants. Further, it discusses the commercial prospects of these GM crops as well as the associated challenges. Given its scope, this book is a valuable resource for agricultural and horticultural scientists/experts wanting to explain to the public, politicians and non-governmental organizations the details of GM crops and how they can improve crops and the lives of farmers.


Genomics and Breeding for Climate-Resilient Crops

Genomics and Breeding for Climate-Resilient Crops

Author: Chittaranjan Kole

Publisher: Springer Science & Business Media

Published: 2013-06-18

Total Pages: 521

ISBN-13: 3642370489

DOWNLOAD EBOOK

Climate change is expected to have a drastic impact on agronomic conditions including temperature, precipitation, soil nutrients, and the incidence of disease pests, to name a few. To face this looming threat, significant progress in developing new breeding strategies has been made over the last few decades. The second volume of Genomics and Breeding for Climate-Resilient Crops describes various genomic and breeding approaches for the genetic improvement of the major target traits. Topics covered include: flowering time; root traits; cold, heat and drought tolerance; water use efficiency; flooding and submergence tolerance; disease and insect resistance; nutrient use efficiency; nitrogen fixation; carbon sequestration; and greenhouse gas emissions.