Potato is the most significant non-cereal crop. Much attention has been paid to this commercially important crop. The aim of this volume is to capture the recent advances made in improving potatoes using traditional breeding methods as well as genetic engineering technology. The book provides a critical appraisal of the state-of-the-art finding on this crop.
The esculent Lycopersicon esculentum, long thought to be poisonous, has become a major U. S. food crop and source of vitamins and minerals, thanks largely to genetic modification and new production technology Rick (1978) Tomato (Lycopersicon esculentum Mill. ) is one of the most important solana ceous vegetable crops grown worldwide under outdoor and indoor conditions. It has become an important commercial crop so far as the area, production, industrial values and its contribution to human nutrition is concerned. During the past few decades tremendous developments have contributed to the knowledge and understanding of various areas of genetics, breeding and biotechnology and voluminous literature has been generated. The purpose of preparing this monograph is to give a comprehensive up-to-date treatment to the various aspects of genetic improvement of tomato. The emphasis has been placed on cytology, classical and molecular genetics, reproductive biology, germplasm resources, hybrid seed production, use of wild taxa, selection/ breeding methods, breeding for abiotic and biotic stresses, processing and quality breeding, improvement for mechanical harvesting, and biotechnology: tissue culture, protoplast fusion, and genetic transformation. These topics are presented in 22 different chapters. However, a few aspects have been discussed in more than one chapter. For example, seed production is treated in chapters 1, 4 and 8; molecular biology/genetic engineering in chapters 3 and 22 and heterosis in chapters 8 and 16.
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
Fruit ripening is an important aspect of fruit production. The timing of it affects supply chains and buying behaviour, and for consumers ripeness not only affects perceptions of health but has nutritional effects too. Ripeness is closely related to spoilage which has a major financial impact on agricultural industries. Currently there are fast moving developments in knowledge of the factors affecting fruit ripeness, and this up-to-date monograph seeks to draw together the disparate research in this area. The aim of the book is to produce a comprehensive account covering almost every area related to fruit ripening including the latest molecular mechanisms regulating fruit ripening, its impact on human nutrition and emerging research and technologies.
Genetic transformation is a key technology, in which genes are transferred from one organism to another in order to improve agronomic traits and ultimately help humans. However, there is concern in some quarters that genetically modified crops may disturb the ecosystem. A number of non-governmental organizations continue to protest against GM crops and foods, despite the fact that many organisms are genetically modified naturally in the course of evolution. In this context, there is a need to educate the public about the importance of GM crops in terms of food and nutritional security. This book provides an overview of various crop plants where genetic transformation has been successfully implemented to improve their agronomically useful traits. It includes information on the gene(s) transferred, the method of gene transfer and the beneficial effects of these gene transfers and the agronomic improvements compared to the wild plants. Further, it discusses the commercial prospects of these GM crops as well as the associated challenges. Given its scope, this book is a valuable resource for agricultural and horticultural scientists/experts wanting to explain to the public, politicians and non-governmental organizations the details of GM crops and how they can improve crops and the lives of farmers. It also appeals to researchers and postgraduate students. This volume focuses on the transgenics of mungbean, cowpea, chickpea, cotton, mulberrry, Jatropha, fingermillet, papaya, citrus plants and cassava. It also discusses CRISPR edited lines.
Plant phenotyping is the thorough assessment of plant traits such as growth, development, adaptation, yield, quality, tolerance, resistance, architecture, and the basic measurement of individual quantitative parameters that form the basis for understanding of traits. Genetic approaches to understand plant growth and development have always benefitted from phenotyping techniques that are simple, rapid and measurable in units. The forward genetics approach is all about understanding the trait inheritance using the phenotypic data and in most cases it is the mutant phenotypes that formed the basis for understanding of gene functions. With rapid advancement of genotyping techniques, high throughput genotyping has become a reality at costs people never imagined to be that low, but the phenotypic methods did not receive same attention. However, without quality phenotyping data the genotyping data cannot be effectively put to use in plant improvement. Therefore efforts are underway to develop high-throughput phenotyping methods in plants to keep pace with revolutionary advancement in genotyping techniques to enhance the efficiency of crop improvement programs. Keeping this in mind, we described in this book the best phenomic tools available for trait improvement in some of the world’s most important crop plants.
"Horticultural Reviews" ist eine Fortsetzungsreihe zu Forschungsartikeln über kommerzielle Nutzpflanzen im Bereich Gartenbau, wie z.B. Obst, Gemüse, Nüsse und Zierpflanzen mit kommerzieller Bedeutung. Band 26 gibt einen Überblick über diese spezielle Thematik. Eine Vielzahl von Artikeln aus einschlägigen Fachzeitschriften wurde hier zusammengetragen, miteinander verglichen und einander gegenübergestellt. Darüber hinaus gibt es eine Fülle von Literaturverweisen, die einen einfachen, zeit- und geldsparenden Zugriff auf die aktuellste Information bieten. Dabei wird der spezialisierte Forscher ebenso angesprochen, wie die große Gemeinschaft der Gartenbauexperten.
A comprehensive and mechanistic perspective on fruit ripening, emphasizing commonalities and differences between fruit groups and ripening processes. Fruits are an essential part of the human diet and contain important phytochemicals that provide protection against heart disease and cancers. Fruit ripening is of importance for human health and for industry-based strategies to harness natural variation, or genetic modification, for crop improvement. This book covers recent advances in the field of plant genomics and how these discoveries can be exploited to understand evolutionary processes and the complex network of hormonal and genetic control of ripening. The book explains the physiochemical and molecular changes in fruit that impact its quality, and recent developments in understanding of the genetic, molecular and biochemical basis for colour, flavour and texture. It is a valuable resource for plant and crop researchers and professionals, agricultural engineers, horticulturists, and food scientists. Summary: Reviews the physiochemical and molecular changes in fruit which impact flavour, texture, and colour Covers recent advances in genomics on the genetic, molecular, and biochemical basis of fruit quality Integrates information on both hormonal and genetic control of ripening Relevant for basic researchers and applied scientists
CRISPRized Horticultural Crops: Genome Modified Plants and Microbes in Food and Agriculture summarizes applications of CRISPR/Cas systems and its advanced variants e.g., CRISPR/Cpf1, base editing and prime editing, for precise editing of horticultural crops. The book discusses vector transformations methods, epi-genome, deep learning, synthetic biology, and precision breeding for improving yield and quality related attributes in horticultural crops. With coverage of the relevant technologies and their applications, the book also includes bioinformatics and large-scale databases and their potential application in fruits, vegetables and ornamental plants and sections on regulatory concerns related to CRISPR edited crops. Horticultural crops, including fruit, vegetable and ornamental plants are an important component of agriculture production systems and play an important role in sustaining human life. - Reviews CRISPR for editing horticultural crops - Discusses vector transformation methods, epigenome, deep learning, synthetic biology and precision breeding - Includes bioinformatics and large-scale databases - Contributes engineering approaches for crop improvement programs