Potato is the most significant non-cereal crop. Much attention has been paid to this commercially important crop. The aim of this volume is to capture the recent advances made in improving potatoes using traditional breeding methods as well as genetic engineering technology. The book provides a critical appraisal of the state-of-the-art finding on
Potato is the most significant non-cereal crop. Much attention has been paid to this commercially important crop. The aim of this volume is to capture the recent advances made in improving potatoes using traditional breeding methods as well as genetic engineering technology. The book provides a critical appraisal of the state-of-the-art finding on this crop.
Genetic improvement has played a vital role in enhancing the yield potential of vegetable crops. There are numerous vegetable crops grown worldwide and variable degrees of research on genetics, breeding and biotechnology have been conducted on these crops. This book brings together the results of such research on crops grouped as alliums, crucifers, cucurbits, leaf crops, tropical underground and miscellaneous. Written by eminent specialists, each chapter concentrates on one crop and covers cytology, genetics, breeding objectives, germplasm resources, reproductive biology, selection breeding methods, heterosis and hybrid seed production, quality and processing attributes and technology. This unique collection will be of great value to students, scientists and vegetable breeders as it provides a reference guide on genetics, breeding and biotechnology of a wide range of vegetable crops.
Potato is the most significant non-cereal crop. Much attention has been paid to this commercially important crop. The aim of this volume is to capture the recent advances made in improving potatoes using traditional breeding methods as well as genetic engineering technology. The book provides a critical appraisal of the state-of-the-art finding on
Potato is the most significant non-cereal crop. Much attention has been paid to this commercially important crop. The aim of this volume is to capture the recent advances made in improving potatoes using traditional breeding methods as well as genetic engineering technology. The book provides a critical appraisal of the state-of-the-art finding on
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g. , ethyl methane sulphonate) have been widely used to induce mutations.
This book describes the strategy used for sequencing, assembling and annotating the tomato genome and presents the main characteristics of this sequence with a special focus on repeated sequences and the ancestral polyploidy events. It also includes the chloroplast and mitochondrial genomes. Tomato (Solanum lycopersicum) is a major crop plant as well as a model for fruit development, and the availability of the genome sequence has completely changed the paradigm of the species’ genetics and genomics. The book describes the numerous genetic and genomic resources available, the identified genes and quantitative trait locus (QTL) identified, as well as the strong synteny across Solanaceae species. Lastly, it discusses the consequences of the availability of a high-quality genome sequence of the cultivated species for the research community. It is a valuable resource for students and researchers interested in the genetics and genomics of tomato and Solanaceae.
This first volume of the Handbook of Plant Breeding book series is devoted to vegetable crops breeding. Each chapter is dedicated to a major vegetable crop. Each chapter contains a comprehensive review of the diversity, breeding techniques, achievements and use of the most advanced molecular techniques in the genetic improvement of these crops. The purpose of the book is to provide breeders and researchers from the public and private sectors with updated information and the latest novelties in the breeding of specific crops of economic relevance. Also, it serves as a major reference book for post-graduate courses and PhD courses on breeding vegetable crops.