Proceedings of the First International Conference on Genetic Algorithms and their Applications

Proceedings of the First International Conference on Genetic Algorithms and their Applications

Author: John J. Grefenstette

Publisher: Psychology Press

Published: 2014-01-02

Total Pages: 345

ISBN-13: 1317760247

DOWNLOAD EBOOK

Computer solutions to many difficult problems in science and engineering require the use of automatic search methods that consider a large number of possible solutions to the given problems. This book describes recent advances in the theory and practice of one such search method, called Genetic Algorithms. Genetic algorithms are evolutionary search techniques based on principles derived from natural population genetics, and are currently being applied to a variety of difficult problems in science, engineering, and artificial intelligence.


Genetic Algorithms in Applications

Genetic Algorithms in Applications

Author: Rustem Popa

Publisher: BoD – Books on Demand

Published: 2012-03-21

Total Pages: 332

ISBN-13: 9535104004

DOWNLOAD EBOOK

Genetic Algorithms (GAs) are one of several techniques in the family of Evolutionary Algorithms - algorithms that search for solutions to optimization problems by "evolving" better and better solutions. Genetic Algorithms have been applied in science, engineering, business and social sciences. This book consists of 16 chapters organized into five sections. The first section deals with some applications in automatic control, the second section contains several applications in scheduling of resources, and the third section introduces some applications in electrical and electronics engineering. The next section illustrates some examples of character recognition and multi-criteria classification, and the last one deals with trading systems. These evolutionary techniques may be useful to engineers and scientists in various fields of specialization, who need some optimization techniques in their work and who may be using Genetic Algorithms in their applications for the first time. These applications may be useful to many other people who are getting familiar with the subject of Genetic Algorithms.


Industrial Applications of Genetic Algorithms

Industrial Applications of Genetic Algorithms

Author: Charles Karr

Publisher: CRC Press

Published: 1998-12-29

Total Pages: 360

ISBN-13: 9780849398018

DOWNLOAD EBOOK

Genetic algorithms (GAs) are computer-based search techniques patterned after the genetic mechanisms of biological organisms that have adapted and flourished in changing, highly competitive environments for millions of years. GAs have been successfully applied to problems in a variety of studies, and their popularity continues to increase because of their effectiveness, applicability, and ease of use. Industrial Applications of Genetic Algorithms shows how GAs have made the leap form their origins in the laboratory to the practicing engineer's toolbox. Each chapter in the book describes a project completed by a graduate student at the University of Alabama.


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


The Practical Handbook of Genetic Algorithms

The Practical Handbook of Genetic Algorithms

Author: Lance D. Chambers

Publisher: CRC Press

Published: 2019-09-17

Total Pages: 438

ISBN-13: 1420050079

DOWNLOAD EBOOK

The mathematics employed by genetic algorithms (GAs)are among the most exciting discoveries of the last few decades. But what exactly is a genetic algorithm? A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. It applies the rules of reproduction, gene crossover, and mutation to pseudo-organism


Genetic Algorithms and Genetic Programming

Genetic Algorithms and Genetic Programming

Author: Michael Affenzeller

Publisher: CRC Press

Published: 2009-04-09

Total Pages: 395

ISBN-13: 1420011324

DOWNLOAD EBOOK

Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al


Classification and Learning Using Genetic Algorithms

Classification and Learning Using Genetic Algorithms

Author: Sanghamitra Bandyopadhyay

Publisher: Springer Science & Business Media

Published: 2007-05-17

Total Pages: 320

ISBN-13: 3540496076

DOWNLOAD EBOOK

This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.


Parallel Genetic Algorithms

Parallel Genetic Algorithms

Author: Gabriel Luque

Publisher: Springer Science & Business Media

Published: 2011-06-15

Total Pages: 173

ISBN-13: 3642220835

DOWNLOAD EBOOK

This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.


Practical Genetic Algorithms

Practical Genetic Algorithms

Author: Randy L. Haupt

Publisher: John Wiley & Sons

Published: 2004-07-30

Total Pages: 273

ISBN-13: 0471671754

DOWNLOAD EBOOK

* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition


Genetic Algorithms + Data Structures = Evolution Programs

Genetic Algorithms + Data Structures = Evolution Programs

Author: Zbigniew Michalewicz

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 257

ISBN-13: 3662028301

DOWNLOAD EBOOK

'What does your Master teach?' asked a visitor. 'Nothing,' said the disciple. 'Then why does he give discourses?' 'He only points the way - he teaches nothing.' Anthony de Mello, One Minute Wisdom During the last three decades there has been a growing interest in algorithms which rely on analogies to natural processes. The emergence of massively par allel computers made these algorithms of practical interest. The best known algorithms in this class include evolutionary programming, genetic algorithms, evolution strategies, simulated annealing, classifier systems, and neural net works. Recently (1-3 October 1990) the University of Dortmund, Germany, hosted the First Workshop on Parallel Problem Solving from Nature [164]. This book discusses a subclass of these algorithms - those which are based on the principle of evolution (survival of the fittest). In such algorithms a popu lation of individuals (potential solutions) undergoes a sequence of unary (muta tion type) and higher order (crossover type) transformations. These individuals strive for survival: a selection scheme, biased towards fitter individuals, selects the next generation. After some number of generations, the program converges - the best individual hopefully represents the optimum solution. There are many different algorithms in this category. To underline the sim ilarities between them we use the common term "evolution programs" .