Provides One Unified Formula That Gives Solutions to Several Types of GSEsGeneralized Sylvester equations (GSEs) are applied in many fields, including applied mathematics, systems and control, and signal processing. Generalized Sylvester Equations: Unified Parametric Solutions presents a unified parametric approach for solving various types of GSEs
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.
This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
Numerical Methods for Linear Control Systems Design and Analysis is an interdisciplinary textbook aimed at systematic descriptions and implementations of numerically-viable algorithms based on well-established, efficient and stable modern numerical linear techniques for mathematical problems arising in the design and analysis of linear control systems both for the first- and second-order models. - Unique coverage of modern mathematical concepts such as parallel computations, second-order systems, and large-scale solutions - Background material in linear algebra, numerical linear algebra, and control theory included in text - Step-by-step explanations of the algorithms and examples
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
The Numerical Jordan Form is the first book dedicated to exploring the algorithmic and computational methods for determining the Jordan form of a matrix, as well as addressing the numerical difficulties in finding it. Unlike the 'pure' Jordan form, the numerical Jordan form preserves its structure under small perturbations of the matrix elements so that its determination presents a well-posed computational problem. If this structure is well conditioned, it can be determined reliably in the presence of uncertainties and rounding errors.This book addresses the form's application in solving some important problems such as the estimation of eigenvalue sensitivity and computing the matrix exponential. Special attention is paid to the Jordan-Schur form of a matrix which, the author suggests, is not exploited sufficiently in the area of matrix computations. Since the mathematical objects under consideration can be sensitive to changes in the elements of the given matrix, the book also investigates the perturbation analysis of eigenvalues and invariant subspaces. This study is supplemented by a collection over 100 M-files suitable for MATLAB in order to implement the state-of-the art algorithms presented in the book for reducing a square matrix into the numerical Jordan form.Researchers in the fields of numerical analysis and matrix computations and any scientists who utilise matrices in their work will find this book a useful resource, and it is also a suitable reference book for graduate and advance undergraduate courses in this subject area.
Parallel Scientific Computing and Optimization introduces new developments in the construction, analysis, and implementation of parallel computing algorithms. This book presents 23 self-contained chapters, including survey chapters and surveys, written by distinguished researchers in the field of parallel computing. Each chapter is devoted to some aspects of the subject: parallel algorithms for matrix computations, parallel optimization, management of parallel programming models and data, with the largest focus on parallel scientific computing in industrial applications. This volume is intended for scientists and graduate students specializing in computer science and applied mathematics who are engaged in parallel scientific computing.
This thesis is concerned with the linear-quadratic optimal control and model order reduction (MOR) of large-scale linear time-varying (LTV) control systems. In the first two parts, particular attention is paid to a tracking-type finite-time optimal control problem with application to an inverse heat conduction problem and the balanced truncation (BT) MOR method for LTV systems. In both fields of application the efficient solution of differential matrix equations (DMEs) is of major importance. The third and largest part deals with the application of implicit time integration methods to these matrix-valued ordinary differential equations. In this context, in particular, the rather new class of peer methods is introduced. Further, for the efficient solution of large-scale DMEs, in practice low-rank solution strategies are inevitable. Here, low-rank time integrators, based on a symmetric indefinte factored representation of the right hand sides and the solution approximations of the DMEs, are presented. In contrast to the classical low-rank Cholesky-type factorization, this avoids complex arithmetic and tricky implementations and algorithms. Both low-rank approaches are compared for numerous implicit time integration methods.
The first in-depth, complete, and unified theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems: QR-like algorithms for dense problems and Krylov subspace methods for sparse problems. The author discusses the theory of the generic GR algorithm, including special cases (for example, QR, SR, HR), and the development of Krylov subspace methods. This book also addresses a generic Krylov process and the Arnoldi and various Lanczos algorithms, which are obtained as special cases. Theoretical and computational exercises guide students, step by step, to the results. Downloadable MATLAB programs, compiled by the author, are available on a supplementary Web site. Readers of this book are expected to be familiar with the basic ideas of linear algebra and to have had some experience with matrix computations. Ideal for graduate students, or as a reference book for researchers and users of eigenvalue codes.