The Fokker-Planck Equation

The Fokker-Planck Equation

Author: Hannes Risken

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 486

ISBN-13: 3642615449

DOWNLOAD EBOOK

This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.


The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions

The Fokker-planck Equation For Stochastic Dynamical Systems And Its Explicit Steady State Solutions

Author: Christian Soize

Publisher: World Scientific

Published: 1994-05-16

Total Pages: 345

ISBN-13: 9814502022

DOWNLOAD EBOOK

This is an analysis of multidimensional nonlinear dissipative Hamiltonian dynamical systems subjected to parametric and external stochastic excitations by the Fokker-Planck equation method.The author answers three types of questions concerning this area. First, what probabilistic tools are necessary for constructing a stochastic model and deriving the FKP equation for nonlinear stochastic dynamical systems? Secondly, what are the main results concerning the existence and uniqueness of an invariant measure and its associated stationary response? Finally, what is the class of multidimensional dynamical systems that have an explicit invariant measure and what are the fundamental examples for applications?


Nonlinear Fokker-Planck Equations

Nonlinear Fokker-Planck Equations

Author: T.D. Frank

Publisher: Springer Science & Business Media

Published: 2005-01-07

Total Pages: 414

ISBN-13: 3540212647

DOWNLOAD EBOOK

Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.


Langevin And Fokker-planck Equations And Their Generalizations: Descriptions And Solutions

Langevin And Fokker-planck Equations And Their Generalizations: Descriptions And Solutions

Author: Sau Fa Kwok

Publisher: World Scientific

Published: 2018-03-07

Total Pages: 208

ISBN-13: 9813228423

DOWNLOAD EBOOK

This invaluable book provides a broad introduction to a rapidly growing area of nonequilibrium statistical physics. The first part of the book complements the classical book on the Langevin and Fokker-Planck equations (H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, 1996)). Some topics and methods of solutions are presented and discussed in details which are not described in Risken's book, such as the method of similarity solution, the method of characteristics, transformation of diffusion processes into the Wiener process in different prescriptions, harmonic noise and relativistic Brownian motion. Connection between the Langevin equation and Tsallis distribution is also discussed.Due to the growing interest in the research on the generalized Langevin equations, several of them are presented. They are described with some details.Recent research on the integro-differential Fokker-Planck equation derived from the continuous time random walk model shows that the topic has several aspects to be explored. This equation is worked analytically for the linear force and the generic waiting time probability distribution function. Moreover, generalized Klein-Kramers equations are also presented and discussed. They have the potential to be applied to natural systems, such as biological systems.


Particle Accelerator Physics I

Particle Accelerator Physics I

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 465

ISBN-13: 3662038277

DOWNLOAD EBOOK

In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.


Fokker-Planck-Kolmogorov Equations

Fokker-Planck-Kolmogorov Equations

Author: Vladimir I. Bogachev

Publisher: American Mathematical Soc.

Published: 2015-12-17

Total Pages: 495

ISBN-13: 1470425580

DOWNLOAD EBOOK

This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.


Gradient Flows

Gradient Flows

Author: Luigi Ambrosio

Publisher: Springer Science & Business Media

Published: 2008-10-29

Total Pages: 333

ISBN-13: 376438722X

DOWNLOAD EBOOK

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.


Stochastic Processes and Applications

Stochastic Processes and Applications

Author: Grigorios A. Pavliotis

Publisher: Springer

Published: 2014-11-19

Total Pages: 345

ISBN-13: 1493913239

DOWNLOAD EBOOK

This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.


The Fokker-Planck Equation

The Fokker-Planck Equation

Author: Hannes Risken

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 468

ISBN-13: 3642968074

DOWNLOAD EBOOK

One of the central problems synergetics is concerned with consists in the study of macroscopic qualitative changes of systems belonging to various disciplines such as physics, chemistry, or electrical engineering. When such transitions from one state to another take place, fluctuations, i.e., random processes, may play an im portant role. Over the past decades it has turned out that the Fokker-Planck equation pro vides a powerful tool with which the effects of fluctuations close to transition points can be adequately treated and that the approaches based on the Fokker Planck equation are superior to other approaches, e.g., based on Langevin equa tions. Quite generally, the Fokker-Planck equation plays an important role in problems which involve noise, e.g., in electrical circuits. For these reasons I am sure that this book will find a broad audience. It pro vides the reader with a sound basis for the study of the Fokker-Planck equation and gives an excellent survey of the methods of its solution. The author of this book, Hannes Risken, has made substantial contributions to the development and application of such methods, e.g., to laser physics, diffusion in periodic potentials, and other problems. Therefore this book is written by an experienced practitioner, who has had in mind explicit applications to important problems in the natural sciences and electrical engineering.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.