Gene Expression and Association Analyses of Stress Responses in Loblolly Pine (Pinus Taeda L.)

Gene Expression and Association Analyses of Stress Responses in Loblolly Pine (Pinus Taeda L.)

Author: Candace Marie Seeve

Publisher:

Published: 2012

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The molecular mechanisms underlying disease-resistance and drought-resistance in forest trees are not well understood. Linking variation in gene expression with genetic polymorphisms and with variations in disease- and drought-resistance phenotypes can provide information about these complex traits. We used real-time quantitative polymerase chain reaction (PCR) to detect variations in the expression of 88 disease- and drought-responsive genes within an association population of 354 loblolly pine trees (Pinus taeda L.). Using association genetics approaches, we then linked 3,938 single nucleotide polymorphisms (SNPs) in candidate genes with gene expression phenotypes to identify novel disease- and drought-responsive genes. To further examine differences in gene expression induced by drought, Fusarium circinatum (responsible for pitch canker disease), and drought +F. circinatum, the expression of 114 genes identified through comparative and association genetics approaches was analyzed on a subset of 24 loblolly pine trees possessing a range of pitch canker- and drought-resistance phenotypes. Significant differences in the uninduced expression of all 88 genes measured on the association population were observed among loblolly pine trees. Principal component analysis showed that some variation within the association population could be accounted for by population substructure of geographic origin. Hierarchical clustering of genes based on uninduced expression did not consistently group together functionally similar genes probably because expression was collected on unstressed stem tissue. This was supported in the smaller expression study as correlations between expression values of genes in the same functional networks were usually stronger when induced by a treatment compared with correlations between the uninduced expression of genes in the control group. Gene expression frequently changed by up to 4-fold in response to one or more treatments, but PtMYB12 was the only gene that exhibited a statistically significant change in response to treatments. ANOVA analyses of gene expression controlling for pitch canker resistance and for water use efficiency phenotypes identified differentially expressed genes suggesting that they may be contributing to these phenotypes. Finally, association genetics approaches detected 101 significant associations between SNPs in 94 candidate genes potentially involved in stress responses and 27 gene expression phenotypes.


Transcript Profiling of Differentiating Xylem of Loblolly Pine (Pinus Taeda L.)

Transcript Profiling of Differentiating Xylem of Loblolly Pine (Pinus Taeda L.)

Author: Suk-Hwan Yang

Publisher:

Published: 2005

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Wood formation (xylogenesis) is a critical developmental process for all woody land plants. As an initial step to understand the molecular basis for temporal and spatial regulation of xylogenesis and the effect of the expression of individual genes on physical and chemical properties of wood, microarray and realtime RT-PCR analyses were performed to monitor gene expression during xylogenesis under various developmental and environmental conditions. The specific objectives established for this study were: Objective 1. Microarray analysis of genes preferentially expressed in differentiating xylem compared to other tissues of loblolly pine (see Chapter II); Objective 2. Microarray analysis of seasonal variation in gene expression for loblolly pines (Pinus taeda L.) from different geographical sources (see Chapter III); Objective 3. Realtime RT-PCR analysis of loblolly pine AGP and AGPlike genes (see Chapter IV). Based on the results from this study, candidate genes may be further studied for association with significant traits, used for genetic modification of wood properties, or included in future studies to further examine the molecular mechanisms of wood formation.


Molecular Physiology and Biotechnology of Trees

Molecular Physiology and Biotechnology of Trees

Author:

Publisher: Academic Press

Published: 2019-01-14

Total Pages: 341

ISBN-13: 0128154667

DOWNLOAD EBOOK

Molecular Physiology and Biotechnology of Trees, Volume 89 in the Advances in Botanical Research series, highlights new advances in the field, with this new volume presenting interesting chapters on such topics as the Activity of the shoot apical and cambial meristems: Coordination and responses to environmental signals, Conifer functional genomics, Nitrogen storage and cycling, Tree defense against pests and pathogens, The ectomycorrhizal contribution to tree nutrition, Phytoremediation with trees, Transcriptional regulation of wood formation, Transgenic poplars, the Genomics of forest trees, and much more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Botanical Research series Includes the latest information on the Molecular Physiology and Biotechnology of Trees


Plant Abiotic Stress Physiology

Plant Abiotic Stress Physiology

Author: Tariq Aftab

Publisher: CRC Press

Published: 2022-02-17

Total Pages: 322

ISBN-13: 1000400751

DOWNLOAD EBOOK

This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.


Molecular Approaches in Plant Abiotic Stress

Molecular Approaches in Plant Abiotic Stress

Author: Rajarshi Kumar Gaur

Publisher: CRC Press

Published: 2013-11-25

Total Pages: 432

ISBN-13: 1466588934

DOWNLOAD EBOOK

Plants under abiotic stress are those suffering from drought, extreme temperatures, flood and other natural—but non-living—factors. Abiotic stress is responsible for reduced yields in several major crops, and climate change is focusing research in this area. To minimize cellular damage cause by such stresses, plants have evolved complex, well-coordinated adaptive responses that operate at the transcriptional level. Understanding these processes is key to manipulating plant performance to withstand stress. This book deals with the role of gene silencing in the adaptation of plants to these stresses, and documents the molecular regulatory systems for the abiotic response.


Forest Genomics and Biotechnology

Forest Genomics and Biotechnology

Author: Isabel Allona

Publisher: Frontiers Media SA

Published: 2019-11-27

Total Pages: 185

ISBN-13: 2889631788

DOWNLOAD EBOOK

This Research Topic addresses research in genomics and biotechnology to improve the growth and quality of forest trees for wood, pulp, biorefineries and carbon capture. Forests are the world’s greatest repository of terrestrial biomass and biodiversity. Forests serve critical ecological services, supporting the preservation of fauna and flora, and water resources. Planted forests also offer a renewable source of timber, for pulp and paper production, and the biorefinery. Despite their fundamental role for society, thousands of hectares of forests are lost annually due to deforestation, pests, pathogens and urban development. As a consequence, there is an increasing need to develop trees that are more productive under lower inputs, while understanding how they adapt to the environment and respond to biotic and abiotic stress. Forest genomics and biotechnology, disciplines that study the genetic composition of trees and the methods required to modify them, began over a quarter of a century ago with the development of the first genetic maps and establishment of early methods of genetic transformation. Since then, genomics and biotechnology have impacted all research areas of forestry. Genome analyses of tree populations have uncovered genes involved in adaptation and response to biotic and abiotic stress. Genes that regulate growth and development have been identified, and in many cases their mechanisms of action have been described. Genetic transformation is now widely used to understand the roles of genes and to develop germplasm that is more suitable for commercial tree plantations. However, in contrast to many annual crops that have benefited from centuries of domestication and extensive genomic and biotechnology research, in forestry the field is still in its infancy. Thus, tremendous opportunities remain unexplored. This Research Topic aims to briefly summarize recent findings, to discuss long-term goals and to think ahead about future developments and how this can be applied to improve growth and quality of forest trees.