This book will provide you with a good practical understanding of quantum electrodynamics, quantum chromodynamics and the electroweak theory, which together make up the standard model. The new edition includes over 50 diagrams showing experimental data, allowing the reader to work through calculations in the three gauge theories and compare the results with experiment.
Intended as an accessible and practical introduction to gauge theories, this volume discusses the main conceptual aspects, examines the practical calculations of physical quantities and offers comparisons of these quantitative predictions with experimental results.
The Advanced Study Institute on Field Theoretical Methods in Particle Physics was held at the Universitat Kaiserslautern in Kaiserslautern, Germany, from August 13 to August 24, 1979. Twenty invited lectures and seminar-speakers and 100 other participants attended this Institute. The contributions of most of the lecturers and seminar-speakers are contained in this volume. The revival of field theory in elementary particle physics that started about ten years ago has influenced all branches of elementary particle physics from fundamental research to pure phenomenology. The selection of field theoretical methods in part icle physics appropriate for the Institute is therefore the first task for the organizers. We decided to have constructive problems of gauge field theories and solvable models as two major areas to be covered during the Institute. If one considers the concepts and terminology currently used by pure field theorists, one notices that many of them were introduced and discussed first by pheno menologists in comparing quite elementary models directly with experimental data. For this reason, it seemed worthwhile to re serve considerable time to phenomenological field theory. The Institute was sponsored by the North Atlantic Treaty Organization whose funds made the Institute possible. It was co sponsored by the Bundes-Ministerium fur Forschung und Technologie in Bonn and the Landes-Ministerium fUr Kultus in Mainz. The City of Kaiserslautern made the Theodor Zink Museum avail able for a reception. Thanks are due in particular to its director, Dr. Dunkel.
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.
When scientists peer through a telescope at the distant stars in outer space or use a particle-accelerator to analyze the smallest components of matter, they discover that the same laws of physics govern the whole universe at all times and all places. Physicists call the eternal, ubiquitous constancy of the laws of physics symmetry. Symmetry is the basic underlying principle that defines the laws of nature and hence controls the universe. This all-important insight is one of the great conceptual breakthroughs in modern physics and is the basis of contemporary efforts to discover a grand unified theory to explain all the laws of physics. Nobel Laureate Leon M. Lederman and physicist Christopher T. Hill explain the supremely elegant concept of symmetry and all its profound ramifications to life on Earth and the universe at large in this eloquent, accessible popular science book. They not only clearly describe concepts normally reserved only for physicists and mathematicians, but they also instill an appreciation for the profound beauty of the universe’s inherent design. Central to the story of symmetry is an obscure, unpretentious, but extremely gifted German mathematician named Emmy Noether. Though still little known to the world, she impressed no less a scientist than Albert Einstein, who praised her "penetrating mathematical thinking." In some of her earliest work she proved that the law of the conservation of energy was connected to the idea of symmetry and thus laid the mathematical groundwork for what may be the most important concept of modern physics. Lederman and Hill reveal concepts about the universe, based on Noether’s work, that are largely unknown to the public and have wide-reaching implications in connection with the Big Bang, Einstein’s theory of relativity, quantum mechanics, and many other areas of physics. Through ingenious analogies and illustrations, they bring these astounding notions to life. This book will open your eyes to a universe you never knew existed.
This book contains the proceedings of the Fifth International Conference on Physics Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics. It presents a brilliant overview of the status and future potential and trends in experimental and theoretical particle physics, cosmology and astrophysics, in the complimentary sectors of accelerator, non-accelerator and space physics.
To the 1st edition of this monograph (addressed to advanced graduate students and researchers ) the author, responding to developments within superstring theory, has added 51/2 chapters dealing with two- dimensional supersymmetry. Authoritative, as lucid as the subject matter allows (yet demanding nonetheless!), attractively produced and priced. (NW) Annotation copyrighted by Book News, Inc., Portland, OR