Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches

Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches

Author: Philipp Berghofer

Publisher: Cambridge University Press

Published: 2023-07-31

Total Pages: 124

ISBN-13: 1009197312

DOWNLOAD EBOOK

Gauge symmetries play a central role, both in the mathematical foundations as well as the conceptual construction of modern (particle) physics theories. However, it is yet unclear whether they form a necessary component of theories, or whether they can be eliminated. It is also unclear whether they are merely an auxiliary tool to simplify (and possibly localize) calculations or whether they contain independent information. Therefore their status, both in physics and philosophy of physics, remains to be fully clarified. This Element reviews the current state of affairs on both the philosophy and the physics side. In particular, it focuses on the circumstances in which the restriction of gauge theories to gauge invariant information on an observable level is warranted, using the Brout-Englert-Higgs theory as an example of particular current importance. Finally, the authors determine a set of yet to be answered questions to clarify the status of gauge symmetries.


Dynamical Gauge Symmetry Breaking

Dynamical Gauge Symmetry Breaking

Author: Edward Farhi

Publisher: World Scientific

Published: 1982

Total Pages: 438

ISBN-13: 9789971950248

DOWNLOAD EBOOK

This book is a collection of original papers on dynamical gauge symmetry breaking, and is intended for graduate students and researchers in theoretical physics (elementary particle physics and others) who have an understanding of basic quantum field theory. The book can serve as a research text for those requiring an introduction to dynamical gauge symmetry breaking and as a reference text for active researchers. The important papers in the field that are included deal with attempts to apply the ideas to realistic models of elementary particle interactions. A historical critique by the editors provides an introductory review.


Aspects of Symmetry

Aspects of Symmetry

Author: Sidney Coleman

Publisher: Cambridge University Press

Published: 1988-02-18

Total Pages: 424

ISBN-13: 1139810960

DOWNLOAD EBOOK

For almost two decades, Sidney Coleman has been giving review lectures on frontier topics in theoretical high-energy physics at the International School of Subnuclear Physics held each year at Erice, Sicily. This volume is a collection of some of the best of these lectures. To this day they have few rivals for clarity of exposition and depth of insight. Although very popular when first published, many of the lectures have been difficult to obtain recently. Graduate students and professionals in high-energy physics will welcome this collection by a master of the field.


Symmetry Breaking

Symmetry Breaking

Author: Franco Strocchi

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783662621653

DOWNLOAD EBOOK

The third edition of the by now classic reference on rigorous analysis of symmetry breaking in both classical and quantum field theories adds new topics of relevance, in particular the effect of dynamical Coulomb delocalization, by which boundary conditions give rise to volume effects and to energy/mass gap in the Goldstone spectrum (plasmon spectrum, Anderson superconductivity, Higgs phenomenon). The book closes with a discussion of the physical meaning of global and local gauge symmetries and their breaking, with attention to the effect of gauge group topology in QCD. From the reviews of the first edition: It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced [...] a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. J.-P. Antoine, Physicalia 28/2, 2006 Despite many accounts in popular textbooks and a widespread belief, the phenomenon is rather subtle, requires an infinite set of degrees of freedom and an advanced mathematical setting of the system under investigation. [...] The mathematically oriented graduate student will certainly benefit from this thorough, rigorous and detailed investigation. G. Roepstorff, Zentralblatt MATH, Vol. 1075, 2006 From the reviews of the second edition: This second edition of Strocchi's Symmetry Breaking presents a complete, generalized and highly rigorous discussion of the subject, based on a formal analysis of conditions necessary for the mechanism of spontaneous symmetry breaking to occur in classical systems, as well as in quantum systems. [...] This book is specifically recommended for mathematical physicists interested in a deeper and rigorous understanding of the subject, and it should be mandatory for researchers studying the mechanism of spontaneous symmetry breaking. S. Hajjawi, Mathematical Reviews, 2008.


Scattering Amplitudes in Gauge Theory and Gravity

Scattering Amplitudes in Gauge Theory and Gravity

Author: Henriette Elvang

Publisher: Cambridge University Press

Published: 2015-02-05

Total Pages: 337

ISBN-13: 1107069254

DOWNLOAD EBOOK

This book provides a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity for graduate students.


Supersymmetry in Particle Physics

Supersymmetry in Particle Physics

Author: Ian Aitchison

Publisher: Cambridge University Press

Published: 2007-09-20

Total Pages: 214

ISBN-13: 1139467050

DOWNLOAD EBOOK

Supersymmetry represents the culmination of the search for fundamental symmetries that has dominated particle physics for 50 years. Traditionally, the constituents of matter (fermions) were regarded as different from the particles (bosons) transmitting the forces between them. In supersymmetry, fermions and bosons are unified. Intended for graduate students in particle physics, and researchers in experimental and phenomenological supersymmetry, this textbook, first published in 2007, provides a simple introduction to a previously formidably technical field. Its elementary, practical treatment brings readers to the frontier of contemporary research, in particular the experiments at the Large Hadron Collider. Theories are constructed through an intuitive 'trial and error' approach. Basic elements of spinor formalism and superfields are introduced, allowing readers to access more advanced treatments. Emphasis is placed on physical understanding, and on detailed derivations of important steps. Many short exercises are included, making for a valuable and accessible self-study tool.


Classical Theory of Gauge Fields

Classical Theory of Gauge Fields

Author: Valery Rubakov

Publisher: Princeton University Press

Published: 2009-02-09

Total Pages: 456

ISBN-13: 1400825091

DOWNLOAD EBOOK

Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.