Game Theory in Wireless and Communication Networks

Game Theory in Wireless and Communication Networks

Author: Zhu Han

Publisher: Cambridge University Press

Published: 2012

Total Pages: 555

ISBN-13: 0521196965

DOWNLOAD EBOOK

This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.


Game Theory for Wireless Engineers

Game Theory for Wireless Engineers

Author: Allen B. MacKenzie

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 76

ISBN-13: 3031016726

DOWNLOAD EBOOK

The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.


Distributed Strategic Learning for Wireless Engineers

Distributed Strategic Learning for Wireless Engineers

Author: Hamidou Tembine

Publisher: CRC Press

Published: 2012-05-18

Total Pages: 498

ISBN-13: 1439876371

DOWNLOAD EBOOK

Although valued for its ability to allow teams to collaborate and foster coalitional behaviors among the participants, game theory’s application to networking systems is not without challenges. Distributed Strategic Learning for Wireless Engineers illuminates the promise of learning in dynamic games as a tool for analyzing network evolution and underlines the potential pitfalls and difficulties likely to be encountered. Establishing the link between several theories, this book demonstrates what is needed to learn strategic interaction in wireless networks under uncertainty, randomness, and time delays. It addresses questions such as: How much information is enough for effective distributed decision making? Is having more information always useful in terms of system performance? What are the individual learning performance bounds under outdated and imperfect measurement? What are the possible dynamics and outcomes if the players adopt different learning patterns? If convergence occurs, what is the convergence time of heterogeneous learning? What are the issues of hybrid learning? How can one develop fast and efficient learning schemes in scenarios where some players have more information than the others? What is the impact of risk-sensitivity in strategic learning systems? How can one construct learning schemes in a dynamic environment in which one of the players do not observe a numerical value of its own-payoffs but only a signal of it? How can one learn "unstable" equilibria and global optima in a fully distributed manner? The book provides an explicit description of how players attempt to learn over time about the game and about the behavior of others. It focuses on finite and infinite systems, where the interplay among the individual adjustments undertaken by the different players generates different learning dynamics, heterogeneous learning, risk-sensitive learning, and hybrid dynamics.


Game Theory for Wireless Engineers

Game Theory for Wireless Engineers

Author: Allen B. MacKenzie

Publisher: Morgan & Claypool Publishers

Published: 2006-12-01

Total Pages: 86

ISBN-13: 1598290177

DOWNLOAD EBOOK

The application of mathematical analysis to wireless networks has met with limited success, due to the complexity of mobility and traffic models, coupled with the dynamic topology and the unpredictability of link quality that characterize such networks. The ability to model individual, independent decision makers whose actions potentially affect all other decision makers makes game theory particularly attractive to analyze the performance of ad hoc networks. Game theory is a field of applied mathematics that describes and analyzes interactive decision situations. It consists of a set of analytical tools that predict the outcome of complex interactions among rational entities, where rationality demands a strict adherence to a strategy based on perceived or measured results. In the early to mid-1990's, game theory was applied to networking problems including flow control, congestion control, routing and pricing of Internet services. More recently, there has been growing interest in adopting game-theoretic methods to model today's leading communications and networking issues, including power control and resource sharing in wireless and peer-to-peer networks. This work presents fundamental results in game theory and their application to wireless communications and networking. We discuss normal-form, repeated, and Markov games with examples selected from the literature. We also describe ways in which learning can be modeled in game theory, with direct applications to the emerging field of cognitive radio. Finally, we discuss challenges and limitations in the application of game theory to the analysis of wireless systems. We do not assume familiarity with game theory. We introduce major game theoretic models and discuss applications of game theory including medium access, routing, energy-efficient protocols, and others. We seek to provide the reader with a foundational understanding of the current research on game theory applied to wireless communications and networking.


Potential Game Theory

Potential Game Theory

Author: Quang Duy Lã

Publisher: Springer

Published: 2016-05-26

Total Pages: 172

ISBN-13: 3319308696

DOWNLOAD EBOOK

This book offers a thorough examination of potential game theory and its applications in radio resource management for wireless communications systems and networking. The book addresses two major research goals: how to identify a given game as a potential game, and how to design the utility functions and the potential functions with certain special properties in order to formulate a potential game. After proposing a unifying mathematical framework for the identification of potential games, the text surveys existing applications of this technique within wireless communications and networking problems found in OFDMA 3G/4G/WiFi networks, as well as next-generation systems such as cognitive radios and dynamic spectrum access networks. Professionals interested in understanding the theoretical aspect of this specialized field will find Potential Game Theory a valuable resource, as will advanced-level engineering students. It paves the way for extensive and rigorous research exploration on a topic whose capacity for practical applications is vast but not yet fully exploited.


Game Theory for Next Generation Wireless and Communication Networks

Game Theory for Next Generation Wireless and Communication Networks

Author: Zhu Han

Publisher: Cambridge University Press

Published: 2019-06-27

Total Pages: 509

ISBN-13: 1108417337

DOWNLOAD EBOOK

A unified treatment of the latest game theoretic approaches for designing, modeling, and optimizing emerging wireless communication networks. Covering theory, analytical tools, and applications, it is ideal for researchers and graduate students in academia and industry designing efficient, scalable and robust protocols for future wireless networks.


Matching Theory for Wireless Networks

Matching Theory for Wireless Networks

Author: Zhu Han

Publisher: Springer

Published: 2017-04-25

Total Pages: 119

ISBN-13: 3319562525

DOWNLOAD EBOOK

This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource.


Game Theory Applications in Network Design

Game Theory Applications in Network Design

Author: Kim, Sungwook

Publisher: IGI Global

Published: 2014-05-31

Total Pages: 522

ISBN-13: 1466660511

DOWNLOAD EBOOK

The use of game theoretic techniques is playing an increasingly important role in the network design domain. Understanding the background, concepts, and principles in using game theory approaches is necessary for engineers in network design. Game Theory Applications in Network Design provides the basic idea of game theory and the fundamental understanding of game theoretic interactions among network entities. The material in this book also covers recent advances and open issues, offering game theoretic solutions for specific network design issues. This publication will benefit students, educators, research strategists, scientists, researchers, and engineers in the field of network design.


Mean-Field-Type Games for Engineers

Mean-Field-Type Games for Engineers

Author: Julian Barreiro-Gomez

Publisher: CRC Press

Published: 2021-11-18

Total Pages: 526

ISBN-13: 1000473538

DOWNLOAD EBOOK

The contents of this book comprise an appropriate background to start working and doing research on mean-field-type control and game theory. To make the exposition and explanation even easier, we first study the deterministic optimal control and differential linear-quadratic games. Then, we progressively add complexity step-by-step and little-by-little to the problem settings until we finally study and analyze mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients. We go beyond the Nash equilibrium, which provides a solution for non- cooperative games, by analyzing other game-theoretical concepts such as the Berge, Stackelberg, adversarial/robust, and co-opetitive equilibria. For the mean-field-type game analysis, we provide several numerical examples using a Matlab-based user-friendly toolbox that is available for the free use to the readers of this book. We present several engineering applications in both continuous and discrete time. Among these applications we find the following: water distribution systems, micro-grid energy storage, stirred tank reactor, mechanism design for evolutionary dynamics, multi-level building evacuation problem, and the COVID-19 propagation control. Julian Barreiro-Gomez Hamidou Tembine With such a demand from engineering audiences, this book is very timely and provides a thorough study of mean-field-type game theory. The strenuous protagonist of this book is to bridge between the theoretical findings and engineering solutions. The book introduces the basics first, and then mathematical frameworks are elaborately explained. The engineering application examples are shown in detail, and the popular learning approaches are also investigated. Those advantageous characteristics will make this book a comprehensive handbook of many engineering fields for many years, and I will buy one when it gets published. Zhu Han