This volume is the offspring of a week-long workshop on "Galois groups over Q and related topics," which was held at the Mathematical Sciences Research Institute during the week March 23-27, 1987. The organizing committee consisted of Kenneth Ribet (chairman), Yasutaka Ihara, and Jean-Pierre Serre. The conference focused on three principal themes: 1. Extensions of Q with finite simple Galois groups. 2. Galois actions on fundamental groups, nilpotent extensions of Q arising from Fermat curves, and the interplay between Gauss sums and cyclotomic units. 3. Representations of Gal(Q/Q) with values in GL(2)j deformations and connections with modular forms. Here is a summary of the conference program: • G. Anderson: "Gauss sums, circular units and the simplex" • G. Anderson and Y. Ihara: "Galois actions on 11"1 ( ••• ) and higher circular units" • D. Blasius: "Maass forms and Galois representations" • P. Deligne: "Galois action on 1I"1(P-{0, 1, oo}) and Hodge analogue" • W. Feit: "Some Galois groups over number fields" • Y. Ihara: "Arithmetic aspect of Galois actions on 1I"1(P - {O, 1, oo})" - survey talk • U. Jannsen: "Galois cohomology of i-adic representations" • B. Matzat: - "Rationality criteria for Galois extensions" - "How to construct polynomials with Galois group Mll over Q" • B. Mazur: "Deforming GL(2) Galois representations" • K. Ribet: "Lowering the level of modular representations of Gal( Q/ Q)" • J-P. Serre: - Introductory Lecture - "Degree 2 modular representations of Gal(Q/Q)" • J.
Bachelor Thesis from the year 2018 in the subject Mathematics - Algebra, grade: 1,0, Free University of Berlin (Mathematik), language: English, abstract: This thesis deals with the correlation of the fundamental group and the Galois group, using their corresponding entities of covering spaces and field extensions. First it is viewed in the general setting of categories, using the language of Galois categories. It is shown that the categories of the finite étale algebras and the category of covering spaces are correlated, which gives the fact that the profinite completion of the fundamental group and the absolute Galois group are similar. More specifically, on Riemann surfaces it is shown that there exists an anti-equivalence of categories between the finite field extensions of the meromorphic functions of a compact, connected Riemann Surface X and the category of branched coverings of X. A more explicit theorem, that provides an isomorphism between a specific Galois Group and the profinite Completion of the Fundamental Group of a pointed X, gives more insight on the behaviour of these two groups.
This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi
This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory, fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory, algebraic geometry, topology and physics.
Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.
Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.
First year, undergraduate, mathematics students in Japan have for many years had the opportunity of a unique experience---an introduction, at an elementary level, to some very advanced ideas in mathematics from one of the leading mathematicians of the world. English reading students now have the opportunity to enjoy this lively presentation, from elementary ideas to cartoons to funny examples, and to follow the mind of an imaginative and creative mathematician into a world of enduring mathematical creations.