Fuzzy Multiple Objective Decision Making

Fuzzy Multiple Objective Decision Making

Author: Gwo-Hshiung Tzeng

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 317

ISBN-13: 1466554622

DOWNLOAD EBOOK

Multi-objective programming (MOP) can simultaneously optimize multi-objectives in mathematical programming models, but the optimization of multi-objectives triggers the issue of Pareto solutions and complicates the derived answers. To address these problems, researchers often incorporate the concepts of fuzzy sets and evolutionary algorithms into M


Fuzzy Multi-Criteria Decision Making

Fuzzy Multi-Criteria Decision Making

Author: Cengiz Kahraman

Publisher: Springer Science & Business Media

Published: 2008-08-09

Total Pages: 591

ISBN-13: 0387768130

DOWNLOAD EBOOK

This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.


Fuzzy Multiple Objective Decision Making

Fuzzy Multiple Objective Decision Making

Author: Young-Jou Lai

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 493

ISBN-13: 3642579493

DOWNLOAD EBOOK

In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory, artificial intelligence/expert system, etc. In this volume, methods and applications of crisp, fuzzy and possibilistic multiple objective decision making are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, it presents solutions for real-world problems including production/manufacturing, location, logistics, environment management, banking/finance, personnel, marketing, accounting, agriculture economics and data analysis. This book is a guided tour through the literature in the rapidly growing fields of operations research and decision making and includes the most up-to-date bibliographical listing of literature on the topic.


Multi-objective Group Decision Making

Multi-objective Group Decision Making

Author: Jie Lu

Publisher: Imperial College Press

Published: 2007

Total Pages: 407

ISBN-13: 1860948596

DOWNLOAD EBOOK

This book proposes a set of models to describe fuzzy multi-objective decision making (MODM), fuzzy multi-criteria decision making (MCDM), fuzzy group decision making (GDM) and fuzzy multi-objective group decision-making problems, respectively. It also gives a set of related methods (including algorithms) to solve these problems. One distinguishing feature of this book is that it provides two decision support systems software for readers to apply these proposed methods. A set of real-world applications and some new directions in this area are then described to further instruct readers how to use these methods and software in their practice.


Multiple Objective Decision Making — Methods and Applications

Multiple Objective Decision Making — Methods and Applications

Author: C.-L. Hwang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 366

ISBN-13: 3642455115

DOWNLOAD EBOOK

Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.


Fuzzy Multiple Attribute Decision Making

Fuzzy Multiple Attribute Decision Making

Author: Shu-Jen Chen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 552

ISBN-13: 3642467687

DOWNLOAD EBOOK

This monograph is intended for an advanced undergraduate or graduate course as well as for researchers, who want a compilation of developments in this rapidly growing field of operations research. This is a sequel to our previous works: "Multiple Objective Decision Making--Methods and Applications: A state-of-the-Art Survey" (No.164 of the Lecture Notes); "Multiple Attribute Decision Making--Methods and Applications: A State-of-the-Art Survey" (No.186 of the Lecture Notes); and "Group Decision Making under Multiple Criteria--Methods and Applications" (No.281 of the Lecture Notes). In this monograph, the literature on methods of fuzzy Multiple Attribute Decision Making (MADM) has been reviewed thoroughly and critically, and classified systematically. This study provides readers with a capsule look into the existing methods, their characteristics, and applicability to the analysis of fuzzy MADM problems. The basic concepts and algorithms from the classical MADM methods have been used in the development of the fuzzy MADM methods. We give an overview of the classical MADM in Chapter II. Chapter III presents the basic concepts and mathematical operations of fuzzy set theory with simple numerical examples in a easy-to-read and easy-to-follow manner. Fuzzy MADM methods basically consist of two phases: (1) the aggregation of the performance scores with respect to all the attributes for each alternative, and (2) the rank ordering of the alternatives according to the aggregated scores.


Fuzzy Sets and Interactive Multiobjective Optimization

Fuzzy Sets and Interactive Multiobjective Optimization

Author: Masatoshi Sakawa

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 319

ISBN-13: 1489916334

DOWNLOAD EBOOK

The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.


Rough Multiple Objective Decision Making

Rough Multiple Objective Decision Making

Author: Jiuping Xu

Publisher: CRC Press

Published: 2011-07-28

Total Pages: 448

ISBN-13: 143987235X

DOWNLOAD EBOOK

Under intense scrutiny for the last few decades, Multiple Objective Decision Making (MODM) has been useful for dealing with the multiple-criteria decisions and planning problems associated with many important applications in fields including management science, engineering design, and transportation. Rough set theory has also proved to be an effective mathematical tool to counter the vague description of objects in fields such as artificial intelligence, expert systems, civil engineering, medical data analysis, data mining, pattern recognition, and decision theory. Rough Multiple Objective Decision Making is perhaps the first book to combine state-of-the-art application of rough set theory, rough approximation techniques, and MODM. It illustrates traditional techniques—and some that employ simulation-based intelligent algorithms—to solve a wide range of realistic problems. Application of rough theory can remedy two types of uncertainty (randomness and fuzziness) which present significant drawbacks to existing decision-making methods, so the authors illustrate the use of rough sets to approximate the feasible set, and they explore use of rough intervals to demonstrate relative coefficients and parameters involved in bi-level MODM. The book reviews relevant literature and introduces models for both random and fuzzy rough MODM, applying proposed models and algorithms to problem solutions. Given the broad range of uses for decision making, the authors offer background and guidance for rough approximation to real-world problems, with case studies that focus on engineering applications, including construction site layout planning, water resource allocation, and resource-constrained project scheduling. The text presents a general framework of rough MODM, including basic theory, models, and algorithms, as well as a proposed methodological system and discussion of future research.


Fuzzy Stochastic Multiobjective Programming

Fuzzy Stochastic Multiobjective Programming

Author: Masatoshi Sakawa

Publisher: Springer Science & Business Media

Published: 2011-02-03

Total Pages: 268

ISBN-13: 144198402X

DOWNLOAD EBOOK

Although studies on multiobjective mathematical programming under uncertainty have been accumulated and several books on multiobjective mathematical programming under uncertainty have been published (e.g., Stancu-Minasian (1984); Slowinski and Teghem (1990); Sakawa (1993); Lai and Hwang (1994); Sakawa (2000)), there seems to be no book which concerns both randomness of events related to environments and fuzziness of human judgments simultaneously in multiobjective decision making problems. In this book, the authors are concerned with introducing the latest advances in the field of multiobjective optimization under both fuzziness and randomness on the basis of the authors’ continuing research works. Special stress is placed on interactive decision making aspects of fuzzy stochastic multiobjective programming for human-centered systems under uncertainty in most realistic situations when dealing with both fuzziness and randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is devoted to mathematical preliminaries, which will be used throughout the remainder of the book. Starting with basic notions and methods of multiobjective programming, interactive fuzzy multiobjective programming as well as fuzzy multiobjective programming is outlined. In Chapter 3, by considering the imprecision of decision maker’s (DM’s) judgment for stochastic objective functions and/or constraints in multiobjective problems, fuzzy multiobjective stochastic programming is developed. In Chapter 4, through the consideration of not only the randomness of parameters involved in objective functions and/or constraints but also the experts’ ambiguous understanding of the realized values of the random parameters, multiobjective programming problems with fuzzy random variables are formulated. In Chapter 5, for resolving conflict of decision making problems in hierarchical managerial or public organizations where there exist two DMs who have different priorities in making decisions, two-level programming problems are discussed. Finally, Chapter 6 outlines some future research directions.


Genetic Algorithms and Fuzzy Multiobjective Optimization

Genetic Algorithms and Fuzzy Multiobjective Optimization

Author: Masatoshi Sakawa

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 306

ISBN-13: 9780792374527

DOWNLOAD EBOOK

Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.