Explains the factors which determine and control the engineering properties of soils--particularly volume change, deformation, strength and permeability. New to this edition: expanded coverage of residual and tropical soils, environmental aspects of soil behavior, material on partly saturated soils, revised treatment of direct or coupled hydraulic, chemical, thermal and electrical flows through soil.
From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering GSP 233 honors the technical contribution of Roy Olson Ph.D. P.E. NAE Distinguished Member ASCE. This Geotechnical Special Publication contains a total of 51 papers 21 authored or co-authored by Prof. Olson along with 30 peer-reviewed contemporary invited or submitted papers. Olson's early work dealt with clay behavior consolidation analyses and compaction of unsaturated soils. His later work focused on applications of soil behavior in foundation and forensic engineering including axial capacity of piles in sand and clay pull out capacity of suction caisson foundations and failures of excavations and bulkhead structures. Contemporary innovations discussed in papers contributed to this volume include developments in consolidation analyses modeling of shear strength measurements of permeability and interpretation of in-situ tests.Lessons learned from failures along with recent developments in foundation engineering such as characterization of energy piles calculation of settlement from dynamic soil properties developments in finite element modeling of foundations mechanism of failure of jacked piles mitigation of piling noise and field load tests on a variety of foundations are also included. From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering contains practical and technical information on soil behavior fundamentals and current applications in geotechnical engineering that will be of interest to educators researchers and practicing geotechnical engineers.
While many introductory texts on soil mechanics are available, most are either lacking in their explanations of soil behavior or provide far too much information without cogent organization. More significantly, few of those texts go beyond memorization of equations and numbers to provide a practical understanding of why and how soil mechanics work.
Introducing the first integrated coverage of sedimentary and residual soil engineering Despite its prevalence in under-developed parts of the United States and most tropical and sub-tropical countries, residual soil is often characterized as a mere extension of conventional soil mechanics in many textbooks. Now, with the rapid growth of construction in these regions, it is essential to gain a fuller understanding of residual soils and their properties—one that's based on an integrated approach to the study of residual and sedimentary soils. One text puts this understanding well within reach: Fundamentals of Soil Mechanics for Sedimentary and Residual Soils. The first resource to provide equal treatment of both residual and sedimentary soils and their unique engineering properties, this skill-building guide offers: A concise introduction to basic soil mechanics, stress-strain behavior, testing, and design In-depth coverage that spans the full scope of soil engineering, from bearing capacity and foundation design to the stability of slopes A focus on concepts and principles rather than methods, helping you avoid idealized versions of soil behavior and maintain a design approach that is consistent with real soils of the natural world An abundance of worked problems throughout, demonstrating in some cases that conventional design techniques applicable to sedimentary soils are not valid for residual soils Numerous end-of-chapter exercises supported by an online solutions manual Full chapter-ending references Taken together, Fundamentals of Soil Mechanics for Sedimentary and Residual Soils is a comprehensive, balanced soil engineering sourcebook that will prove indispensable for practitioners and students in civil engineering, geotechnical engineering, structural engineering, and geology.
Soils can rarely be described as ideally elastic or perfectly plastic and yet simple elastic and plastic models form the basis for the most traditional geotechnical engineering calculations. With the advent of cheap powerful computers the possibility of performing analyses based on more realistic models has become widely available. One of the aims of this book is to describe the basic ingredients of a family of simple elastic-plastic models of soil behaviour and to demonstrate how such models can be used in numerical analyses. Such numerical analyses are often regarded as mysterious black boxes but a proper appreciation of their worth requires an understanding of the numerical models on which they are based. Though the models on which this book concentrates are simple, understanding of these will indicate the ways in which more sophisticated models will perform.
Contains state-of-the-art papers covering fundamental areas of soft ground mechanical behavior, geochemistry, and links between the two. In addition, there are several papers on state-of-the-art practice, historical overviews, and case studies in soft ground construction.
Discover the principles that support the practice! With its simplicity in presentation, this text makes the difficult concepts of soil mechanics and foundations much easier to understand. The author explains basic concepts and fundamental principles in the context of basic mechanics, physics, and mathematics. From Practical Situations and Essential Points to Practical Examples, this text is packed with helpful hints and examples that make the material crystal clear.
How Does Soil Behave and Why Does It Behave That Way?Soil Mechanics Fundamentals and Applications, Second Edition effectively explores the nature of soil, explains the principles of soil mechanics, and examines soil as an engineering material. This latest edition includes all the fundamental concepts of soil mechanics, as well as an introduction to
An understanding of the mechanical properties of unsaturated soilsis crucial for geotechnical engineers worldwide, as well as tothose concerned with the interaction of structures with the ground.This book deals principally with fine-grained clays and silts, orsoils containing coarser sand and gravel particles but with asignificant percentage of fines. The study of unsaturated soil is a practical subject, linkingfundamental science to nature. Soils in general are inherentlyvariable and their behaviour is not easy to analyse or predict, andunsaturated soils raise the complexity to a higher level. Evenamongst practicing engineers, there is often lack of awareness ofthe intricacies of the subject. This book offers a perspective ofunsaturated soils based on recent research and demonstrates howthis dovetails with the general discipline of soil mechanics. Following an introduction to the basic soil variables, thephases, the phase interactions and the relevance of soil structure,an up-to-date review of laboratory testing techniques is presented.This includes suction measurement and control techniques intriaxial cell testing. This is followed by an introduction tostress state variables, critical state and theoretical models inunsaturated soils. A detailed description of the thermodynamic principles asapplied to multi-phase materials under equilibrium conditionsfollows. These principles are then used to explore and develop afundamental theoretical basis for analysing unsaturated soils. Soilstructure is broken down into its component parts to developequations describing the dual stress regime. The critical statestrength and compression characteristics of unsaturated soils areexamined and it is shown how the behaviour may be viewed as athree-dimensional model in dimensionless stress-volume space. Theanalysis is then extended to the work input into unsaturated soilsand the development of conjugate stress, volumetric andstrain-increment variables. These are used to examine themicromechanical behaviour of kaolin specimens subjected to triaxialshear strength tests and lead to observations not detectable byother means. Unsaturated Soils: A fundamental interpretation of soilbehaviour covers a rapidly advancing area of study, researchand engineering practice and offers a deeper appreciation of thekey characteristics of unsaturated soil. It provides students andresearchers with a framework for understanding soil behaviour anddemonstrates how to interpret experimental strength and compressiondata. provides engineers with a deeper appreciation of keycharacteristics of unsaturated soils covers a rapidly advancing area of study, research andengineering practice provides students and researchers a framework for understandingsoil behaviour shows how to interpret experimental data on strength andcompression the limited number of books on the subject are all out ofdate
This book explains the hypoplastic modelling framework. It is divided into two parts, the first of which is devoted to principles of hypoplasticity. First, the basic features of soil’s mechanical behaviour are introduced, namely non-linearity and asymptotic properties. These features are then incorporated into simple one-dimensional hypoplastic equations for compression and shear. Subsequently, a hypoplastic equivalent of the Modified Cam-Clay model is developed in 2D space using stress and strain invariants to demonstrate key similarities and differences between elasto-plastic and hypoplastic formulations. Lastly, the mathematical structure of hypoplastic models is explained by tracing their historical development, from the early trial-and-error models to more recent approaches. In turn, Part II introduces specific hypoplastic models for soils. First, two reference models for sand and clay are defined. After summarising their mathematical formulations, calibration procedures are described and discussed. Subsequently, more advanced modelling approaches are covered: the intergranular strain concept incorporating the effects of small strain stiffness and cyclic loading, viscohypoplasticity for predicting rate effects, soil structure to represent structured and bonded materials and soil anisotropy. The book concludes with a description of partial saturation and thermal effects: topics that are increasingly important to the disciplines of energy and environmental geotechnics. Selecting a constitutive model and its parameters is often the most important and yet challenging part of any numerical analysis in geotechnical engineering. Hypoplasticity involves a specific class of soil constitutive models, which are described in detail here. The book offers an essential resource, both for model users who need a more advanced model for their geotechnical calculations and are mainly interested in parameter calibration procedures, and for model developers who are seeking a comprehensive understanding of the mathematical structure of hypoplasticity.