During the past decade, the field of polymer degradation and stabilization has become a subject of central importance in polymer science and technology. This book provides a fundamental source of information designed for those with only a basic understanding of the background of the field.
The development of polymers as an important class of material was inhibited at the first by the premature failure of these versatile compounds in many applications. The deterioration of important properties of both natural and synthetic polymers is the result of irreversible changes in composition and structure of polymers molecules. As a result of these reactions, mechanical, electrical and/or aesthetic properties are degraded beyond acceptable limits. It is now generally recognized that stabilization against degradation is necessary if the useful life of polymers is to be extended sufficiently to meet design requirements for long-term applications. Polymers degrade by a wide variety of mechanisms, several of which affect all polymers through to varying degree. This monograph will concentrate on those degradation mechanisms which result from reactions of polymers with oxygen in its various forms and which are accelerated by heat and/or radiation. Those stabilization mechanisms are discussed which are based on an understanding of degradation reaction mechanisms that are reasonably well established. The stabilization of polymers is still undergoing a transition from an art to a science as mechanisms of degradation become more fully developed. A scientific approach to stabilization can only be approached when there is an understanding of the reactions that lead to degradation. Stabilization against biodegradation and burning will not be discussed since there is not a clear understanding of how polymers degrade under these conditions.
The study of polymer degradation and stabilisation is of considerable practical importance as the industrial uses of polymeric materials continue to expand. In this book, the authors lucidly relate technological phenomena to the chemistry and physics of degradation and stabilisation processes. Degradation embraces a variety of technologically important phenomena ranging from relatively low temperature processes such as 'weathering' of plastics, 'fatigue' of rubbers through the processing of polymers in shearing mixers to very high temperature processes such as flammability and ablation. All these technological phenomena have in common certain basic chemical reactions. Thus 'weathering' has its roots in photo-oxidation, 'fatigue' and melt-degradation in mechano-oxidation and flammability, and ablation in ablation in pyrolysis and vapour phase oxidation.
A classic text in the field of chemical engineering, this revised sixth edition offers a comprehensive exploration of polymers at a level geared toward upper-level undergraduates and beginning graduate students. It contains more theoretical background for some of the fundamental concepts pertaining to polymer structure and behavior, while also providing an up-to-date discussion of the latest developments in polymerization systems. New problems have been added to several of the chapters, and a solutions manual is available upon qualifying course adoption.
The book covers traditional green chemistry topics, including catalysis, benign solvents, and alternative feedstocks. It also discusses relevant but less frequently covered topics with chapters such as Chemistry of Longer Wear and Population and the Environment. This coverage highlights the importance of chemistry to everyday life and demonstrates the benefits the expanded exploitation of green chemistry can have for society. Copiously illustrated with over 800 figures, this second edition provides an update from the frontiers of the field.
This review describes the main types of stabilisers with the focus on those categories for polyolefins. It also elucidates some of the physical and chemical aspects of such products when incorporated into the polymer matrix, discussing stability during weathering, heat ageing and processing. The review is supported by several hundred relevant abstracts selected from the Polymer Library.
Interest in green chemistry and clean processes has grown so much in recent years that topics such as fluorous biphasic catalysis, metal organic frameworks, and process intensification, which were barely mentioned in the First Edition, have become major areas of research. In addition, government funding has ramped up the development of fuel cells and biofuels. This reflects the evolving focus from pollution remediation to pollution prevention. Copiously illustrated with more than 800 figures, the Third Edition provides an update from the frontiers of the field. It features supplementary exercises at the end of each chapter relevant to the chemical examples introduced in each chapter. Particular attention is paid to a new concluding chapter on the use of green metrics as an objective tool to demonstrate proof of synthesis plan efficiency and to identify where further improvements can be made through fully worked examples relevant to the chemical industry. NEW AND EXPANDED RESEARCH TOPICS Metal-organic frameworks Metrics Solid acids for alkylation of isobutene by butanes Carbon molecular sieves Mixed micro- and mesoporous solids Organocatalysis Process intensification and gas phase enzymatic reactions Hydrogen storage for fuel cells Reactive distillation Catalysts in action on an atomic scale UPDATED AND EXPANDED CURRENT EVENTS TOPICS Industry resistance to inherently safer chemistry Nuclear power Removal of mercury from vaccines Removal of mercury and lead from primary explosives Biofuels Uses for surplus glycerol New hard materials to reduce wear Electronic waste Smart growth The book covers traditional green chemistry topics, including catalysis, benign solvents, and alternative feedstocks. It also discusses relevant but less frequently covered topics with chapters such as "Chemistry of Long Wear" and "Population and the Environment." This coverage highlights the importance of chemistry to everyday life and demonstrates the benefits the expanded exploitation of green chemistry can have for society.
When confronted with a problem in science, the way to proceed is not always obvious. The problem may seem intractable or there may be many possible solutions, with some better than others. Problem-Solving Exercises in Green and Sustainable Chemistry teaches students how to analyze and solve real-world problems that occur in an environmental context
The crucial interdependence between humans and their environment is explored and illuminated in this revealing overview of the major environmental issues facing society in the twenty-first century. This volume presents a novel picture of some of the current advances in the research of theoretical and practical frameworks of environmental problems and solutions taken from the latest empirical findings. This new volume focuses on the aspects of new techniques that are particularly valuable for solving environmental problems. The complex environmental issues are presented in simple terms to helpreaders grasp the basics and solve relevant problems. Timely and comprehensive discussions of applications to real-world environmental concerns are a central focus of this research-oriented volume.
Because of unique water properties, humidity affects materials and many living organisms, including humans. Humidity control is important in various fields, from production management to creating a comfortable living environment. The range of materials that can be used in the development of humidity sensors is very broad, and the third volume of the Handbook of Humidity Measurement offers an analysis on various humidity-sensitive materials and sensor technologies used in the fabrication of humidity sensors and methods acceptable for their testing. Additional features include: numerous strategies for the fabrication and characterization of humidity-sensitive materials and sensing structures used in sensor applications, methods and properties to develop smaller, cheaper, more robust, and accurate devices with better sensitivity and stability, a guide to sensor selection and an overview of the humidity sensor market, and new technology solutions for integration, miniaturization, and specificity of the humidity sensor calibration. Handbook of Humidity Measurement, Volume 3: Sensing Materials and Technologies provides valuable information for practicing engineers, measurement experts, laboratory technicians, project managers in industries and national laboratories, and university students and professors interested in solutions to humidity measurement tasks. Despite the fact that this book is devoted to the humidity sensors, it can be used as a basis for understanding fundamentals of any gas sensor operation and development.