This thoroughly updated open learning text provides an introduction to electroanalytical chemistry, one of today's fastest growing and most exciting frontiers of analytical science. The author discusses electroanalysis in a non-mathematical and informal tutorial style and offers over 250 discussion and self-assessment questions. In addition he includes 50 worked examples that provide excellent material for testing the reader's understanding of the subject matter. The topics covered include the following: * Simple emf measurements with cells * Equilibrium and dynamic measurements * Polarography * Cyclic voltammetry * Rotated disc, ring-disc and wall-jet electrodes * In situ spectroelectrochemistry measurements * Impedance analysis * Preparation of electrodes * Data processing The book also contains a comprehensive bibliography and details of web-based resources. It assumes no prior knowledge of this powerful branch of analytical science and will be an invaluable aid for anyone wanting to perform analytical measurements using electrochemical technqiues. Is approach makes it also ideal for students.
The critically acclaimed guide to the principles, techniques, and instruments of electroanalytical chemistry-now expanded and revised Joseph Wang, internationally renowned authority on electroanalytical techniques, thoroughly revises his acclaimed book to reflect the rapid growth the field has experienced in recent years. He substantially expands the theoretical discussion while providing comprehensive coverage of the latest advances through late 1999, introducing such exciting new topics as self-assembled monolayers, DNA biosensors, lab-on-a-chip, detection for capillary electrophoresis, single molecule detection, and sol-gel surface modification. Along with numerous references from the current literature and new worked-out examples, Analytical Electrochemistry, Second Edition offers clear, reader-friendly explanations of the fundamental principles of electrochemical processes as well as important insight into the potential of electroanalysis for problem solving in a wide range of fields, from clinical diagnostics to environmental science. Key topics include: The basics of electrode reactions and the structure of the interfacial region Tools for elucidating electrode reactions and high-resolution surface characterization An overview of finite-current controlled potential techniques Electrochemical instrumentation and electrode materials Principles of potentiometric measurements and ion-selective electrodes Chemical sensors, including biosensors, gas sensors, solid-state devices, and sensor arrays
Das führende Werk auf seinem Gebiet - jetzt durchgängig auf den neuesten Stand gebracht! Die theoretischen Grundlagen der Elektrochemie, erweitert um die aktuellsten Erkenntnisse in der Theorie des Elektronentransfers, werden hier ebenso besprochen wie alle wichtigen Anwendungen, darunter modernste Verfahren (Ultramikroelektroden, modifizierte Elektroden, LCEC, Impedanzspektrometrie, neue Varianten der Pulsvoltammetrie und andere). In erster Linie als Lehrbuch gedacht, läßt sich das Werk aber auch hervorragend zum Selbststudium und zur Auffrischung des Wissensstandes verwenden. Lediglich elementare Grundkenntnisse der physikalischen Chemie werden vorausgesetzt.
Electrochemistry plays a key role in a broad range of research and applied areas including the exploration of new inorganic and organic compounds, biochemical and biological systems, corrosion, energy applications involving fuel cells and solar cells, and nanoscale investigations. The Handbook of Electrochemistry serves as a source of electrochemical information, providing details of experimental considerations, representative calculations, and illustrations of the possibilities available in electrochemical experimentation. The book is divided into five parts: Fundamentals, Laboratory Practical, Techniques, Applications, and Data. The first section covers the fundamentals of electrochemistry which are essential for everyone working in the field, presenting an overview of electrochemical conventions, terminology, fundamental equations, and electrochemical cells, experiments, literature, textbooks, and specialized books. Part 2 focuses on the different laboratory aspects of electrochemistry which is followed by a review of the various electrochemical techniques ranging from classical experiments to scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry. Applications of electrochemistry include electrode kinetic determinations, unique aspects of metal deposition, and electrochemistry in small places and at novel interfaces and these are detailed in Part 4. The remaining three chapters provide useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials. * serves as a source of electrochemical information * includes useful electrochemical data and information involving electrode potentials, diffusion coefficients, and methods used in measuring liquid junction potentials * reviews electrochemical techniques (incl. scanning electrochemical microscopy, electrogenerated chemiluminesence and spectroelectrochemistry)
Electrochemistry is a discipline of wide scientific and technological interest. Scientifically, it explores the electrical properties of materials and especially the interfaces between different kinds of matter. Technologically, electrochemistry touches our lives in many ways that few fully appreciate; for example, materials as diverse as aluminum, nylon, and bleach are manufactured electrochemically, while the batteries that power all manner of appliances, vehicles, and devices are the products of electrochemical research. Other realms in which electrochemical science plays a crucial role include corrosion, the disinfection of water, neurophysiology, sensors, energy storage, semiconductors, the physics of thunderstorms, biomedical analysis, and so on. This book treats electrochemistry as a science in its own right, albeit resting firmly on foundations provided by chemistry, physics, and mathematics. Early chapters discuss the electrical and chemical properties of materials from which electrochemical cells are constructed. The behavior of such cells is addressed in later chapters, with emphasis on the electrodes and the reactions that occur on their surfaces. The role of transport to and from electrodes is a topic that commands attention, because it crucially determines cell efficiency. Final chapters deal with voltammetry, the methodology used to investigate electrode behavior. Interspersed among the more fundamental chapters are chapters devoted to applications of electrochemistry: electrosynthesis, power sources, “green electrochemistry”, and corrosion. Electrochemical Science and Technology is addressed to all who have a need to come to grips with the fundamentals of electrochemistry and to learn about some of its applications. It will constitute a text for a senior undergraduate or graduate course in electrochemistry. It also serves as a source of material of interest to scientists and technologists in various fields throughout academia, industry, and government – chemists, physicists, engineers, environmentalists, materials scientists, biologists, and those in related endeavors. This book: Provides a background to electrochemistry, as well as treating the topic itself. Is accessible to all with a foundation in physical science, not solely to chemists. Is addressed both to students and those later in their careers. Features web links (through www.wiley.com/go/EST) to extensive material that is of a more tangential, specialized, or mathematical nature. Includes questions as footnotes to support the reader’s evolving comprehension of the material, with fully worked answers provided on the web. Provides web access to Excel® spreadsheets which allow the reader to model electrochemical events. Has a copious Appendix of relevant data.
"Fundamentals of Electrochemical Science is a valuable contribution and I support the publication....I am looking forward to seeing this book on the shelves, and once published, I will not hesitate to recommend itto my students." --ANDRZEJ WIECKOWSKI, University of Illinois at Urbana-Champaign - Deals comprehensively with the basic science of electrochemistry - Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry - Provides a thorough and quantitative description of electrochemical fundamentals
Electrogenerated chemiluminescence (ECL) is a powerful and versatile analytical technique, which is widely applied for biosensing and successfully commercialized in the healthcare diagnostic market. After introducing the fundamental concepts, this book will highlight the recent analytical applications with a special focus on immunoassays, genotoxicity, imaging, DNA and enzymatic assays. The topic is clearly at the frontier between several scientific domains involving analytical chemistry, electrochemistry, photochemistry, materials science, nanoscience and biology. This book is ideal for graduate students, academics and researchers in industry looking for a comprehensive guide to the different aspects of electrogenerated chemiluminescence.
Using 372 references and 211 illustrations, this book underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments. It treats not only the fundamental concepts of electrode reactions, but also covers the methodology and practical application of the many versatile electrochemical techniques available. - Underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments - Treats the fundamental concepts of electrode reactions - Covers the methodology and practical application of the many versatile electrochemical techniques available
Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more
Electrochromic devices have a number of important commercial applications, for instance in displays, as optical shutters, and as modulators for mirrors, windows, and sun-glasses. Electrochromism - Fundamentals and Applications is the first in-depth treatise on the topic. Written by leading scientists in the field, it is a state-of-the-art account of all aspects of electrochromism, presented at a level accessible to chemists, physicists, materials scientists and engineers. Both the physical and chemical background of electrochromic phenomena are described and a comprehensive survey of both organic and inorganic compounds and systems is given. Special emphasis is placed on providing detailed, hands-on information on applications and potential uses of electrochromic systems. This book is essential reading for scientists active in the field and for anyone wishing to enter the field. An extensive list of carefully chosen references rounds off this valuable reference source.