Now in a new edition, this book continues to set the standard for teaching readers how to be effective problem solvers, emphasizing the authors's signature methodologies that have taught over a half million students worldwide. This new edition provides a student-friendly approach that emphasizes the relevance of thermodynamics principles to some of the most critical issues of today and coming decades, including a wealth of integrated coverage of energy and the environment, biomedical/bioengineering, as well as emerging technologies. Visualization skills are developed and basic principles demonstrated through a complete set of animations that have been interwoven throughout.
A bestselling textbook, this edition features a fresh, two-color design, expanded problem sections with over 50% new design applications, updated content areas and new computer aided thermodynamics software included with each copy.
Both a comprehensive overview and a treatment at the appropriate level of detail, this textbook explains thermodynamics and generalizes the subject so it can be applied to small nano- or biosystems, arbitrarily far from or close to equilibrium. In addition, nonequilibrium free energy theorems are covered with a rigorous exposition of each one. Throughout, the authors stress the physical concepts along with the mathematical derivations. For researchers and students in physics, chemistry, materials science and molecular biology, this is a useful text for postgraduate courses in statistical mechanics, thermodynamics and molecular simulations, while equally serving as a reference for university teachers and researchers in these fields.
"Modern Thermodynamics- Based on the Extended Carnot Theorem" provides comprehensive definitions and mathematical expressions of both classical and modern thermodynamics. The goal is to develop the fundamental theory on an extended Carnot theorem without incorporating any extraneous assumptions. In particular, it offers a fundamental thermodynamic and calculational methodology for the synthesis of low-pressure diamonds. It also discusses many "abnormal phenomena", such as spiral reactions, cyclic reactions, chemical oscillations, low-pressure carat-size diamond growth, biological systems, and more. The book is intended for chemists and physicists working in thermodynamics, chemical thermodynamics, phase diagrams, biochemistry and complex systems, as well as graduate students in these fields. Jitao Wang is a professor emeritus at Fudan University, Shanghai, China.
A comprehensive introduction to this important subject, presenting the fundamentals of classical and statistical thermodynamics through carefully developed concepts which are supported by many examples and applications. * Each chapter includes numerous carefully worked out examples and problems * Takes a more applied approach rather than theoretical * Necessary mathematics is left simple * Accessible to those fairly new to the subject
This textbook facilitates students’ ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
This new edition of Borgnakke's Fundamentals of Thermodynamics continues to offer a comprehensive and rigorous treatment of classical thermodynamics, while retaining an engineering perspective. With concise, applications-oriented discussion of topics and self-test problems, this text encourages students to monitor their own learning. This classic text provides a solid foundation for subsequent studies in fields such as fluid mechanics, heat transfer and statistical thermodynamics, and prepares students to effectively apply thermodynamics in the practice of engineering.
Thermodynamics is the much abused slave of many masters • physicists who love the totally impractical Carnot process, • mechanical engineers who design power stations and refrigerators, • chemists who are successfully synthesizing ammonia and are puzzled by photosynthesis, • meteorologists who calculate cloud bases and predict föhn, boraccia and scirocco, • physico-chemists who vulcanize rubber and build fuel cells, • chemical engineers who rectify natural gas and distil f- mented potato juice, • metallurgists who improve steels and harden surfaces, • - trition counselors who recommend a proper intake of calories, • mechanics who adjust heat exchangers, • architects who construe – and often misconstrue – ch- neys, • biologists who marvel at the height of trees, • air conditioning engineers who design saunas and the ventilation of air plane cabins, • rocket engineers who create supersonic flows, et cetera. Not all of these professional groups need the full depth and breadth of ther- dynamics. For some it is enough to consider a well-stirred tank, for others a s- tionary nozzle flow is essential, and yet others are well-served with the partial d- ferential equation of heat conduction. It is therefore natural that thermodynamics is prone to mutilation; different group-specific meta-thermodynamics’ have emerged which serve the interest of the groups under most circumstances and leave out aspects that are not often needed in their fields.
Professor Buchdahl presents a systematic exposition of classical thermodynamics, against a background of general physical theory and on a purely phenomenological (i.e. non-statistical) level. Although particular attention is paid to the meaning of the various concepts introduced, Professor Buchdahl is not afraid of making simplifications where these are likely to enhance the reader's understanding of the subject and the relationships between the principal and ancillary laws. The emphasis throughout is on meaning and physical significance. Specific applications of the general theory are discussed in two final chapters. This book, first published in 1966, is intended for the student who has taken a first course in analytical, though not axiomatic, development of the subject. It will supplement rather than replace, the many familiar introductory treatments of thermodynamics.
Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.