Offers comprehensive methods in analysis, characterization, and assessment of the major renewable energy sources Introduces in theoretical concepts and principles of major renewable energy conversion systems in a manner that is easily digestible by junior students, beginners in the field, engineers, and renewable energy practitioners Introduces key concepts of design and modeling methods and techniques used in renewable energy generation Presents the most common direct applications of major renewable energy systems Includes many solved examples and end-of-chapter questions and problems, helping readers to understand the theory and concepts
- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
Geothermal Energy Systems provides design and analysis methodologies by using exergy and enhanced exergy tools (covering exergoenvironmental, exergoeconomic, exergetic life cycle assessment, etc.), environmental impact assessment models, and sustainability models and approaches. In addition to presenting newly developed advanced and integrated systems for multigenerational purposes, the book discusses newly developed environmental impact assessment and sustainability evaluation methods and methodologies. With case studies for integrated geothermal energy sources for multigenerational aims, engineers can design and develop new geothermal integrated systems for various applications and discover the main advantages of design choices, system analysis, assessment and development of advanced geothermal power systems. - Explains the ability of geothermal energy power systems to decrease global warming - Discusses sustainable development strategies for using geothermal energy sources - Provides new design conditions for geothermal energy sources-based district energy systems
This textbook is intended for an audience with little or no power engineering or renewable energy background. The book covers electric energy from alternative energy sources, including solar, wind, water, hydropower, geothermal, and ocean energy. Core issues discussed include wind and solar resource estimates and analysis, solar thermal systems, solar collectors, photovoltaics, wind turbines, geothermal energy, energy small hydropower, wave, tide and ocean energy, and characteristics of energy conversion, control, and electrical aspects. This is one of the most comprehensive textbooks for students, engineers, and professionals who study renewable energy. There are several questions and problems, presented with increasing difficulty, most of which focus on practical applications. The materials and problems are drawn from the author’s extensive experience in renewable energy analysis, assessment, design, control, and the power electronics of wind and solar energy conversion systems. Each section of the book contains several solved examples, as well as practical and advanced discussions, that instill critical thinking and apply to industrial applications. The book is divided into eight chapters and covers the most important aspects of renewable energy sources and technologies.
By mid-century, renewable energy must cover all of our energy supply if we are to phase out nuclear and successfully stop climate change. Now updated and expanded, the 2nd edition of this textbook covers the full range of renewable energy systems and now also includes such current trends as solar power storage, power-to-gas technologies, and the technology paths needed for a successful and complete energy transition. The topics are treated in a holistic manner, bringing together maths, engineering, climate studies and economics, and enabling readers to gain a broad understanding of renewable energy technologies and their potential.Numerous examples are provided for calculations, and graphics help visualize the various technologies and mathematical methodologies. Understanding Renewable Energy Systems is an ideal companion for students of renewable energy at universities or technical colleges on courses such as renewable energy, electrical engineering, engineering technology, physics, process engineering, building engineering, environment, applied mechanics and mechanical engineering, as well as scientists and engineers in research and industry.
Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. - Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy - Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results - Includes new circuits and systems, helping researchers solve many nonlinear problems
This Book Can Be Used As A Text Book For The Under Graduate As Well As Post Graduate Curriculum Of Different Universities And Engineering Institutions. Working Personnel, Engaged In Designing, Installing And Analyzing Of Different Renewable Energy Systems, Can Make Good Use Of This Book In Course Of Their Scheduled Activities. It Provides A Clear And Detailed Exposition Of Basic Principles Of Operation, Their Material Science Aspects And The Design Steps.Particular Care Has Been Taken In Elaborating The Concepts Of Hybrid Energy Systems, Integrated Energy Systems And The Critical Role Of Renewable Energy In Preserving Today'S Environment. References At The End Of Each Chapter Have Been Taken From Publications In Different Reputed Journals, Recent Proceedings Of National And International Conferences And Recent Web Sites Along With Ireda And Teri Reports.
This book covers all important, new, and conventional aspects of building electrical systems, power distribution, lighting, transformers and rotating electric machines, wiring, and building installations. Solved examples, end-of-chapter questions and problems, case studies, and design considerations are included in each chapter, highlighting the concepts, and diverse and critical features of building and industrial electrical systems, such as electric or thermal load calculations; wiring and wiring devices; conduits and raceways; lighting analysis, calculation, selection, and design; lighting equipment and luminaires; power quality; building monitoring; noise control; building energy envelope; air-conditioning and ventilation; and safety. Two chapters are dedicated to distributed energy generation, building integrated renewable energy systems, microgrids, DC nanogrids, power electronics, energy management, and energy audit methods, topics which are not often included in building energy textbooks. Support materials are included for interested instructors. Readers are encouraged to write their own solutions while solving the problems, and then refer to the solved examples for more complete understanding of the solutions, concepts, and theory.
This book explores the intrinsically multiscale issue of renewable energy transition from a local, national and transnational perspective, and provides insights into current developments in the Upper Rhine Region that can serve as an international model. Organised around the exploration of stakeholder issues, the volume first describes a framework for public action and modelling and then articulates a triple complementary focus from the viewpoint of law, economics and sociology. This multidisciplinary approach is anchored in the social sciences, but also explores the ways in which technological issues are increasingly debated in the implementation of the ecological transition. With a focus on the Upper Rhine Region of France, Germany and Switzerland, the contributions throughout analyse how concrete regional projects emerge, and whether they are carried out by local authorities, private energy groups, network associations or committed citizens. From this, it appears that real-world energy transition modes can be best understood as permanent transactional processes involving institutional regulations, economic levers and barriers and social interactions. This book will be of interest to advanced students and scholars focusing on renewable energy transition, stakeholder issues, environment and sustainability studies, as well as those who are interested in the methodological aspects of the social sciences, especially within the fields of sociology, law, economy, geography, political science, urbanism and planning.
The comprehensive guide to engineering alternative and renewable energy systems and applications—updated for the latest trends and technologies This book was designed tohelp engineers develop new solutions for the current energy economy. To that end it provides technical discussions, along with numerous real-world examples of virtually all existing alternative energy sources, applications, systems and system components. All chapters focus on first-order engineering calculations, and consider alternative uses of existing and renewable energy resources. Just as important, the author describes how to apply these concepts to the development of new energy solutions. Since the publication of the critically acclaimed first edition of this book, the alternative, renewable and sustainable energy industries have witnessed significant evolution and growth. Hydraulic fracturing, fossil fuel reserve increases, the increasing popularity of hybrid and all-electric vehicles, and the decreasing cost of solar power already have had a significant impact on energy usage patterns worldwide. Updated and revised to reflect those and other key developments, this new edition features expanded coverage of topics covered in the first edition, as well as entirely new chapters on hydraulic fracturing and fossil fuels, hybrid and all-electric vehicles, and more. Begins with a fascinating look at the changing face of global energy economy Features chapters devoted to virtually all sources of alternative energy and energy systems Offers technical discussions of hydropower, wind, passive solar and solar-thermal, photovoltaics, fuel cells, CHP systems, geothermal, ocean energy, biomass, and nuclear Contains updated chapter review questions, homework problems, and a thoroughly revised solutions manual, available on the companion website While Alternative Energy Systems and Applications, Second Edition is an ideal textbook/reference for advanced undergraduate and graduate level engineering courses in energy-related subjects, it is also an indispensable professional resource for engineers and technicians working in areas related to the development of alternative/renewable energy systems.