Molecular Devices and Machines

Molecular Devices and Machines

Author: Vincenzo Balzani

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 511

ISBN-13: 3527605347

DOWNLOAD EBOOK

The miniaturization of bulky devices and machines is a process that confronts us on a daily basis. However, nanoscale machines with varied and novel characteristics may also result from the enlargement of extremely small building blocks, namely individual molecules. This bottom-up approach to nanotechnology is already being pursued in information technology, with many other branches about to follow. - Written by a team of experienced authors headed by Vincenzo Balzani, one of the pioneers in the development of molecular machines - Covers such diverse aspects as sensors, memory components, solar energy conversion, biomolecules as molecular machines, and much more - Presented in a lucid style and didactically structured, with both the expert and the newcomer in mind - Includes a glossary of terms and numerous references to the recent literature Be among the first to explore the fascinating possibilities of this future-oriented technology! A must-have for every chemist and materials scientist with an interest in nanotechnology.


Functionality of Molecular Systems

Functionality of Molecular Systems

Author: Kenichi Honda

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 255

ISBN-13: 4431685502

DOWNLOAD EBOOK

Molecular systems are assemblies of molecules designed to possess special qualities and desired functionality. Such systems are important because they provide materials with novel properties, and they will be particularly useful for minimizing electronic devices. In this two volume work, the first volume, subtitled 'From Molecules to Molecular Systems', covered the fundamentals of molecular design, while volume 2 deals with the potential applications of molecular systems. Information transduction and energy conversion are the basis of any practical device, and these considerations, along with the required interconnections and interfaces, are analyzed to produce the architectural design for a molecular system. The preparation of molecular systems is also considered, including that of self-organizing molecular assemblies, ultrathin films, and ultrafine particles.


Molecular and Nano Electronics: Analysis, Design and Simulation

Molecular and Nano Electronics: Analysis, Design and Simulation

Author: Jorge M. Seminario

Publisher: Elsevier

Published: 2006-10-24

Total Pages: 293

ISBN-13: 0080465838

DOWNLOAD EBOOK

The aim of Molecular and Nano Electronics: Analysis, Design and Simulation is to draw together contributions from some of the most active researchers in this new field in order to illustrate a theory guided-approach to the design of molecular and nano-electronics. The field of molecular and nano-electronics has driven solutions for a post microelectronics era, where microelectronics dominate through the use of silicon as the preferred material and photo-lithography as the fabrication technique to build binary devices (transistors). The construction of such devices yields gates that are able to perform Boolean operations and can be combined with computational systems, capable of storing, processing, and transmitting digital signals encoded as electron currents and charges. Since the invention of the integrated circuits, microelectronics has reached increasing performances by decreasing strategically the size of its devices and systems, an approach known as scaling-down, which simultaneously allow the devices to operate at higher speeds.* Provides a theory-guided approach to the design of molecular and nano-electronics* Includes solutions for researchers working in this area* Contributions from some of the most active researchers in the field of nano-electronics


Molecular Logic-based Computation

Molecular Logic-based Computation

Author: A Prasanna de Silva

Publisher: Royal Society of Chemistry

Published: 2016-01-13

Total Pages: 417

ISBN-13: 1782626239

DOWNLOAD EBOOK

We all learn - in schools, factories, bars and streets. We gather, store, process and transmit information in society. Molecular systems involved in our senses and within our brains allow all this to happen and molecular systems allow living things of all kinds to handle information for the purpose of survival and growth. Nevertheless, the vital link between molecules and computation was not generally appreciated until a few decades ago. Semiconductor-based information technology had penetrated society at many levels and the interest in maintaining momentum of this revolution led to the consideration of molecules, among others, as possible information handlers. Such an overlap between the recent engineering-oriented revolution with the ancient biology-oriented success story is very interesting and George Boole's times in Ireland 150 years ago produced the logic ideas that provide the foundations of computation to this day. Molecular logic and computation is a field which is 17 years young, has had a healthy growth and is a story which deserves to be told. It is a growing branch of chemical science which highlights the connection between information technology (engineering and biological) and chemistry. The author and co-workers of this publication launched molecular logic as an experimental field by publishing the first research in the primary literature in 1993 and are uniquely placed to recount how the field has grown. There is no other book at present on molecular logic and computation and is more comprehensive than that found in any review available so far. It shows how designed molecules can play the role of information processors in a wide variety of situations, once we are educated by those information processors already available in the semiconductor electronics business and in the natural world. Following a short history of the field, is a set of primers on logic, computing and photochemical principles which are an essential basis in this field. The book covers all of the Boolean logic gates driven by a single input and all of those with double inputs and the wide range of designs which lie beneath these gates is a particular highlight. The easily-available diversity of chemical systems is another highlight, especially when it leads to reconfigurable logic gates. Further on in the book, molecular arithmetic and other more complex logic operations, including those with a memory and those which stray beyond binary are covered. Then follows molecular computing approaches which lie outside the Boolean blueprint, including quantum phenomena and finally, the book catalogues the useful real-life applications of molecular logic and computation which are already available. This book is an authoritative, state of the art, reference and a 'one-stop-shop' concerning the current state of the field for scientists, academics and postgraduate students.


From Molecules to Molecular Systems

From Molecules to Molecular Systems

Author: Saburo Nagakura

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 340

ISBN-13: 4431668683

DOWNLOAD EBOOK

Molecular systems are assemblies of molecules designed to possess special qualities and desired functionality. Such systems are important because they provide materials with novel properties, and they will be particularly useful for minimizing electronic devices. Molecular systems often form organized molecular crystals, polymers, or thin films that are significantly more complex than current materials. To provide a sound basis for understanding these levels of complexity, this book provides an analysis of the fundamentals of electronic structures, dynamic processes in condensed phases, and the unique properties of organic molecular solids and the environmental effects on these properties. Also covered are the latest methods in physical chemistry that are particularly useful for deriving and controlling the functionality of molecular systems. A second volume subtitled From Molecular Systems to Molecular Devices is also being published.


Molecular Robotics

Molecular Robotics

Author: Satoshi Murata

Publisher: Springer Nature

Published: 2022-08-17

Total Pages: 304

ISBN-13: 981193987X

DOWNLOAD EBOOK

In this book, researchers at the forefront of the field explain the minimum necessary background knowledge and introduce important topics in molecular robotics in an easy-to-understand manner.Molecular robotics is related to many fields, such as systems engineering, control engineering, computer science, biochemistry, biophysics, polymer chemistry, nucleic acid chemistry, molecular biology, and ethics. The whole picture of molecular robotics can be grasped only by looking at these fields from a bird's-eye view. This book has been planned in the belief that such a book is essential for students and those new to the field to understand the ongoing expansion of molecular robotics.The book consists of eight chapters: introduction, design theory of molecular robots, systemization technology, molecular nanotechnology, molecular actuators, molecular materials, medical applications, and social acceptance. In each chapter, the reader can get a general idea of the theory, underlying technology, medical applications, and social issues, and can also understand what is currently being done on the research front. In addition, there are many parts that introduce topics related to molecular robotics.


Chemistry of Nanomolecular Systems

Chemistry of Nanomolecular Systems

Author: Manfred Baerns

Publisher: Springer Science & Business Media

Published: 2004

Total Pages: 222

ISBN-13: 9783540441359

DOWNLOAD EBOOK

This book describes contemporary efforts to develop nano-molecular systems for future molecular electronics in which single molecules act as the basic elements in electrical circuits. While describing frontier research, it also gives a comprehensive introduction and discusses the related work being pursued worldwide. The book is composed of three parts. The first part describes the synthesis of novel molecules for molecular nano-systems. The second part deals mainly with nano-molecular systems on solid surfaces and the evaluation of the system with SPM. The third part reviews the theory required as a background for molecular electronics.


Chemistry of Nanomolecular Systems

Chemistry of Nanomolecular Systems

Author: Takayoshi Nakamura

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 204

ISBN-13: 3662052504

DOWNLOAD EBOOK

Recently, molecular electronics, especially that utilizing single molecules, has been attracting much attention. This is mainly because the theoretical limit is approaching in the present silicon-based technology, and the development of an alternative process is strongly desired. Single-molecule electronics is aimed at a breakthrough toward the next generation of computing systems. By designing and synthesizing highly functionalized molecules of nanometer size and incorporating these molecules into electrical circuits, we shall obtain much dense and high-speed processors. The concept of single-molecule electronics was first introduced by Aviram and Ratnar in 1978. In the early 1980s, many groups all over the world had started research on molecular electronics. At that time, single-molecule manipulation techniques had not been born, and the research was mainly carried out on molecular films formed by the Langmuir~Blodgett technique, a wet process, and by molecular-beam epitaxy, a dry process. A number of prototypes of switching devices and logic gates were, however, reported in the 1980s. In the early 1990s, scanning probe microscopes became popular and researchers obtained a single-molecule manipulation and evaluation tech nique. It became possible to fabricate practical devices using single molecules or small numbers of molecules. Finally, at the end of the last century, an explosion in the research field of single-molecule electronics was witnessed. In addition, studies of "biocomputing" started in the early 1980s and significant progress was achieved in the last century.


Molecular Devices

Molecular Devices

Author: Andrei A. Gakh

Publisher: John Wiley & Sons

Published: 2018-08-07

Total Pages: 352

ISBN-13: 0471411396

DOWNLOAD EBOOK

Comprehensive look at mechanical molecular devices that mimic the behavior of man-made devices Molecular devices and molecular machines are individual molecules and molecular systems capable of providing valuable device-like functions. Many of them have distinct conventional prototypes and therefore can be identified as technomimetic molecules. The last decade has seen an increasing rate of practical applications of molecular devices and machines, primarily in biomedical and material science fields. Molecular devices: An Introduction to Technomimetics and its Biological Applications focuses on mechanical molecular devices, including the early set of technomimetic molecules. Topics covered include the many simple molecular devices such as container compounds, gearing systems, belts and tubes, and tweezers. It touches upon each molecular machine and discusses in great detail the importance of their applications as well as the latest progress in the fields of chemistry, physics, and biotechnology. Interdisciplinary: Must-have content for physicists, chemists, and biologists Comprehensive: Details an extensive set of mechanical technomimetic molecular devices Thorough: Starts with the fundamental material characterization and finishes with real-world device application Molecular devices: An Introduction to Technomimetics and its Biological Applications is an important book for graduate students, researchers, scientists, and engineers in the fields of chemistry, materials science, molecular physics, engineering, biotechnology, and molecular medicine.