Frontiers of Engineering

Frontiers of Engineering

Author: National Academy of Engineering

Publisher: National Academies Press

Published: 2007-03-08

Total Pages: 202

ISBN-13: 0309103398

DOWNLOAD EBOOK

This volume includes 15 papers from the National Academy of Engineering's 2006 U.S. Frontiers of Engineering (USFOE) Symposium held in September 2006. USFOE meetings bring together 100 outstanding engineers (ages 30 to 45) to exchange information about leading-edge technologies in a range of engineering fields. The 2006 symposium covered four topic areas: intelligent software systems and machines, the nano/bio interface, engineering personal mobility for the 21st century, and supply chain management. A paper by dinner speaker Dr. W. Dale Compton, Lillian M. Gilbreth Distinguished Professor of Industrial Engineering, Emeritus, is also included. The papers describe leading-edge research on commercializing auditory neuroscience, future developments in bionanotechnology, sustainable urban transportation, and managing disruptions to supply chains, among other topics. Appendixes include information about contributors, the symposium program, and a list of meeting participants. This is the twelfth volume in the USFOE series.


Nanostructured Polymer Blends

Nanostructured Polymer Blends

Author: Sabu Thomas

Publisher: William Andrew

Published: 2013-11-28

Total Pages: 570

ISBN-13: 1455731609

DOWNLOAD EBOOK

Over 30% of commercial polymers are blends or alloys or one kind or another. Nanostructured blends offer the scientist or plastics engineer a new range of possibilities with characteristics including thermodynamic stablility; the potential to improve material transparency, creep and solvent resistance; the potential to simultaneously increase tensile strength and ductility; superior rheological properties; and relatively low cost. Nanostructured Polymer Blends opens up immense structural possibilities via chemical and mechanical modifications that generate novel properties and functions and high-performance characteristics at a low cost. The emerging applications of these new materials cover a wide range of industry sectors, encompassing the coatings and adhesives industry, electronics, energy (photovoltaics), aerospace and medical devices (where polymer blends provide innovations in biocompatible materials). This book explains the science of nanostructure formation and the nature of interphase formations, demystifies the design of nanostructured blends to achieve specific properties, and introduces the applications for this important new class of nanomaterial. All the key topics related to recent advances in blends are covered: IPNs, phase morphologies, composites and nanocomposites, nanostructure formation, the chemistry and structure of additives, etc. - Introduces the science and technology of nanostructured polymer blends – and the procedures involved in melt blending and chemical blending to produce new materials with specific performance characteristics - Unlocks the potential of nanostructured polymer blends for applications across sectors, including electronics, energy/photovoltaics, aerospace/automotive, and medical devices (biocompatible polymers) - Explains the performance benefits in areas including rheological properties, thermodynamic stablility, material transparency, solvent resistance, etc.


Advances in Mechanical Processing and Design

Advances in Mechanical Processing and Design

Author: Prita Pant

Publisher: Springer Nature

Published: 2020-11-25

Total Pages: 656

ISBN-13: 981157779X

DOWNLOAD EBOOK

This book presents selected proceedings of the International Conference on Advances in Mechanical Processing and Design (ICAMPD 2019). The contents highlight latest research in next-generation mechanical systems design, thermal and fluid systems design, materials and smart manufacturing processes, and industrial engineering. Some of the topics covered include smart materials, materials processing and applications, smart machinery and machine design, system dynamics and simulation, biomimetics, energy systems, micro- and nano-scale transport, automotive engineering, advance material characterization and testing, and green and sustainable manufacturing. Given the scope of the contents, this book can be of interest to students, researchers as well as industry professionals.


Polymer Functionalized Graphene

Polymer Functionalized Graphene

Author: Arun Kumar Nandi

Publisher: Royal Society of Chemistry

Published: 2021-06-18

Total Pages: 457

ISBN-13: 1788019687

DOWNLOAD EBOOK

There is an immense variety of research on polymer functionalized graphene (PFG). Functionalization of graphene is necessary for improvement of the compatibility with polymers. Applications of these graphene polymer hybrids include in chemical and biological sensing, photovoltaic devices, supercapacitors and batteries, dielectric materials and drug/gene delivery vehicles. This book will shed light on the synthesis, properties and applications of these new materials, covering two methods (covalent and noncovalent) for producing polymer functionalized graphene. Chapters cover physical, optical, mechanical and electronic properties, applications of polymer functionalized graphene in energy harvesting and storage, and uses in biomedicine and bioengineering. Written by an expert in the field, Polymer Functionalized Graphene will be of interest to graduate students and researchers in polymer chemistry and nanoscience.


Organic Optoelectronic Materials

Organic Optoelectronic Materials

Author: Yongfang Li

Publisher: Springer

Published: 2015-05-30

Total Pages: 402

ISBN-13: 3319168622

DOWNLOAD EBOOK

This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.


2D Nanomaterials

2D Nanomaterials

Author: Ram K. Gupta

Publisher: CRC Press

Published: 2022-05-26

Total Pages: 387

ISBN-13: 1000586111

DOWNLOAD EBOOK

2D nanomaterials have emerged as promising candidates for use in energy devices owing to their superior electrochemical properties, surface area, nanodevice integration, multifunctionality, printability, and mechanical flexibility. 2D Nanomaterials: Chemistry and Properties covers basic concepts, chemistries, and properties along with theoretical considerations in designing new 2D nanomaterials, especially for energy applications. This book: Discusses the effect of doping, structural variation, phase, and exfoliation on structural and electrochemical properties of 2D nanomaterials Presents synthesis, characterization, and applications of 2D materials for green energy production and storage Explores new aspects of synthesizing 2D nanomaterials beyond traditionally layered structures Examines challenges in using 2D materials for energy applications This book is aimed at materials scientists, chemists, electrochemists, and engineers working in energy disciplines.


Characterization of Polymer Blends

Characterization of Polymer Blends

Author: Sabu Thomas

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 972

ISBN-13: 3527331530

DOWNLOAD EBOOK

Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.


Physics of Semiconductor Devices

Physics of Semiconductor Devices

Author: V. K. Jain

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 841

ISBN-13: 3319030027

DOWNLOAD EBOOK

The purpose of this workshop is to spread the vast amount of information available on semiconductor physics to every possible field throughout the scientific community. As a result, the latest findings, research and discoveries can be quickly disseminated. This workshop provides all participating research groups with an excellent platform for interaction and collaboration with other members of their respective scientific community. This workshop’s technical sessions include various current and significant topics for applications and scientific developments, including • Optoelectronics • VLSI & ULSI Technology • Photovoltaics • MEMS & Sensors • Device Modeling and Simulation • High Frequency/ Power Devices • Nanotechnology and Emerging Areas • Organic Electronics • Displays and Lighting Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.


Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices

Author: Beata Luszczynska

Publisher: John Wiley & Sons

Published: 2019-09-16

Total Pages: 686

ISBN-13: 352734442X

DOWNLOAD EBOOK

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.


Polymer Morphology

Polymer Morphology

Author: Qipeng Guo

Publisher: John Wiley & Sons

Published: 2016-05-16

Total Pages: 472

ISBN-13: 1118452151

DOWNLOAD EBOOK

With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials