The objective of this symposium is to discuss the recent developments in the various areas of functional analysis. This volume consists mainly of articles in the fields of topological algebra, Banach spaces, function spaces, harmonic analysis, operator theory and application of functional analysis.
In these proceedings of the international conference held in Kyoto in memoryof the late Professor K saku Yosida, twenty six invited speakers display in their many facets of functional analysis and its applications in the research tradition of Yosida's school. Many of the topics are related tolinear and non-linear partial differential equations, including the Schr|dinger equations, the Navier-Stokes equations and quasilinear hyperbolic equations. Several of the papers are survey articles, the others are original (unpublished) and refereed research articles. Also included is a full listing of the publications of K. Yosida. Recommendedto students and research workers looking for a bird's-eye view of current research activity in functional analysis and its applications. FROM THE CONTENTS: K. Ito: Semigroups in probability theory.- T. Kato: Abstract evolution equations, linear and quasilinear, revisited.- J.L. Lions: Remarkson systems with incompletely given initial data and incompletely given part of the boundary.- H. Brezis: New energies for harmonic maps and liquid crystals.- D. Fujiwara: Some Feynman path integrals as oscillatory integrals over a Sobolev manifold.- M. Giga, Y. Giga, H. Sohr: L estimates for the Stokes system.- Y. Kawahigashi: Exactly solvable orbifold models and subfactors.- H. Kitada: Asymptotic completeness of N-body wave operators II. A new proof for the short-range case and the asymptotic clustering for the long-range systems. Y. Kobayashi, S. Oharu: Semigroups oflocally Lipschitzian operators and applications.- H. Komatsu: Operational calculus and semi-groups of operators.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1972.
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry