Function Theory of Several Complex Variables

Function Theory of Several Complex Variables

Author: Steven George Krantz

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 586

ISBN-13: 0821827243

DOWNLOAD EBOOK

Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.


Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables

Author: Robert Clifford Gunning

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 338

ISBN-13: 0821821652

DOWNLOAD EBOOK

The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.


Methods of the Theory of Functions of Many Complex Variables

Methods of the Theory of Functions of Many Complex Variables

Author: Vasiliy Sergeyevich Vladimirov

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 370

ISBN-13: 0486458121

DOWNLOAD EBOOK

This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.


Geometric Function Theory in Several Complex Variables

Geometric Function Theory in Several Complex Variables

Author: Junjirō Noguchi

Publisher: American Mathematical Soc.

Published: 1990

Total Pages: 292

ISBN-13: 9780821845332

DOWNLOAD EBOOK

An English translation of a book that first appeared in Japanese. It provides an account of recent developments in geometric function theory in several complex variables and presents fundamental descriptions of positive currents, plurisubharmonic functions and meromorphic mappings.


Holomorphic Functions and Integral Representations in Several Complex Variables

Holomorphic Functions and Integral Representations in Several Complex Variables

Author: R. Michael Range

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 405

ISBN-13: 1475719183

DOWNLOAD EBOOK

The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "complex convexity" related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC", including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.


Analytic Function Theory of Several Variables

Analytic Function Theory of Several Variables

Author: Junjiro Noguchi

Publisher: Springer

Published: 2016-08-16

Total Pages: 407

ISBN-13: 9811002916

DOWNLOAD EBOOK

The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.


Entire Functions of Several Complex Variables

Entire Functions of Several Complex Variables

Author: Pierre Lelong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 283

ISBN-13: 3642703445

DOWNLOAD EBOOK

I - Entire functions of several complex variables constitute an important and original chapter in complex analysis. The study is often motivated by certain applications to specific problems in other areas of mathematics: partial differential equations via the Fourier-Laplace transformation and convolution operators, analytic number theory and problems of transcen dence, or approximation theory, just to name a few. What is important for these applications is to find solutions which satisfy certain growth conditions. The specific problem defines inherently a growth scale, and one seeks a solution of the problem which satisfies certain growth conditions on this scale, and sometimes solutions of minimal asymp totic growth or optimal solutions in some sense. For one complex variable the study of solutions with growth conditions forms the core of the classical theory of entire functions and, historically, the relationship between the number of zeros of an entire function f(z) of one complex variable and the growth of If I (or equivalently log If I) was the first example of a systematic study of growth conditions in a general setting. Problems with growth conditions on the solutions demand much more precise information than existence theorems. The correspondence between two scales of growth can be interpreted often as a correspondence between families of bounded sets in certain Frechet spaces. However, for applications it is of utmost importance to develop precise and explicit representations of the solutions.


Function Theory of One Complex Variable

Function Theory of One Complex Variable

Author: Robert Everist Greene

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 536

ISBN-13: 9780821839621

DOWNLOAD EBOOK

Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.


Nevanlinna Theory in Several Complex Variables and Diophantine Approximation

Nevanlinna Theory in Several Complex Variables and Diophantine Approximation

Author: Junjiro Noguchi

Publisher: Springer Science & Business Media

Published: 2013-12-09

Total Pages: 425

ISBN-13: 4431545719

DOWNLOAD EBOOK

The aim of this book is to provide a comprehensive account of higher dimensional Nevanlinna theory and its relations with Diophantine approximation theory for graduate students and interested researchers. This book with nine chapters systematically describes Nevanlinna theory of meromorphic maps between algebraic varieties or complex spaces, building up from the classical theory of meromorphic functions on the complex plane with full proofs in Chap. 1 to the current state of research. Chapter 2 presents the First Main Theorem for coherent ideal sheaves in a very general form. With the preparation of plurisubharmonic functions, how the theory to be generalized in a higher dimension is described. In Chap. 3 the Second Main Theorem for differentiably non-degenerate meromorphic maps by Griffiths and others is proved as a prototype of higher dimensional Nevanlinna theory. Establishing such a Second Main Theorem for entire curves in general complex algebraic varieties is a wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of entire curves in semi-abelian varieties, including the Second Main Theorem of Noguchi-Winkelmann-Yamanoi, is dealt with in full details in Chap. 6. For that purpose Chap. 5 is devoted to the notion of semi-abelian varieties. The result leads to a number of applications. With these results, the Kobayashi hyperbolicity problems are discussed in Chap. 7. In the last two chapters Diophantine approximation theory is dealt with from the viewpoint of higher dimensional Nevanlinna theory, and the Lang-Vojta conjecture is confirmed in some cases. In Chap. 8 the theory over function fields is discussed. Finally, in Chap. 9, the theorems of Roth, Schmidt, Faltings, and Vojta over number fields are presented and formulated in view of Nevanlinna theory with results motivated by those in Chaps. 4, 6, and 7.