Function Spaces and Inequalities

Function Spaces and Inequalities

Author: Pankaj Jain

Publisher: Springer

Published: 2017-10-20

Total Pages: 334

ISBN-13: 981106119X

DOWNLOAD EBOOK

This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.


Function Spaces with Dominating Mixed Smoothness

Function Spaces with Dominating Mixed Smoothness

Author: Hans Triebel

Publisher:

Published: 2019

Total Pages: 210

ISBN-13: 9783037196953

DOWNLOAD EBOOK

The first part of this book is devoted to function spaces in Euclidean $n$-space with dominating mixed smoothness. Some new properties are derived and applied in the second part where weighted spaces with dominating mixed smoothness in arbitrary bounded domains in Euclidean $n$-space are introduced and studied. This includes wavelet frames, numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of function spaces, especially of Besov-Sobolev type. In particular, it will be of interest for researchers dealing with approximation theory, numerical integration and discrepancy.


Theory of Function Spaces III

Theory of Function Spaces III

Author: Hans Triebel

Publisher: Springer Science & Business Media

Published: 2006-09-10

Total Pages: 433

ISBN-13: 3764375825

DOWNLOAD EBOOK

This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.


Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration

Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration

Author: Hans Triebel

Publisher: European Mathematical Society

Published: 2010

Total Pages: 314

ISBN-13: 9783037190852

DOWNLOAD EBOOK

The first chapters of this book deal with Haar bases, Faber bases and some spline bases for function spaces in Euclidean $n$-space and $n$-cubes. These are used in the subsequent chapters to study sampling and numerical integration preferably in spaces with dominating mixed smoothness. The subject of the last chapter is the symbiotic relationship between numerical integration and discrepancy, measuring the deviation of sets of points from uniformity. This book is addressed to graduate students and mathematicians who have a working knowledge of basic elements of function spaces and approximation theory and who are interested in the subtle interplay between function spaces, complexity theory and number theory (discrepancy).


Functional Analysis, Harmonic Analysis, and Image Processing

Functional Analysis, Harmonic Analysis, and Image Processing

Author: Michael Cwikel

Publisher: American Mathematical Soc.

Published: 2017-07-26

Total Pages: 422

ISBN-13: 1470428369

DOWNLOAD EBOOK

This volume is dedicated to the memory of Björn Jawerth. It contains original research contributions and surveys in several of the areas of mathematics to which Björn made important contributions. Those areas include harmonic analysis, image processing, and functional analysis, which are of course interrelated in many significant and productive ways. Among the contributors are some of the world's leading experts in these areas. With its combination of research papers and surveys, this book may become an important reference and research tool. This book should be of interest to advanced graduate students and professional researchers in the areas of functional analysis, harmonic analysis, image processing, and approximation theory. It combines articles presenting new research with insightful surveys written by foremost experts.


Monte Carlo and Quasi-Monte Carlo Methods

Monte Carlo and Quasi-Monte Carlo Methods

Author: Art B. Owen

Publisher: Springer

Published: 2018-07-03

Total Pages: 476

ISBN-13: 3319914367

DOWNLOAD EBOOK

This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.


Hyperbolic Cross Approximation

Hyperbolic Cross Approximation

Author: Dinh Dũng

Publisher: Springer

Published: 2018-11-02

Total Pages: 222

ISBN-13: 3319922408

DOWNLOAD EBOOK

This book provides a systematic survey of classical and recent results on hyperbolic cross approximation. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research.


Theory of Function Spaces

Theory of Function Spaces

Author: Hans Triebel

Publisher: Springer Science & Business Media

Published: 2010-06-16

Total Pages: 287

ISBN-13: 3034604165

DOWNLOAD EBOOK

The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where ‐∞s∞ and 0p,q≤∞, which include many classical and modern spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rsubn


Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration

Author: Hans Triebel

Publisher: European Mathematical Society

Published: 2012

Total Pages: 120

ISBN-13: 9783037191071

DOWNLOAD EBOOK

This book deals first with Haar bases, Faber bases and Faber frames for weighted function spaces on the real line and the plane. It extends results in the author's book, ``Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration'' (EMS, 2010), from unweighted spaces (preferably in cubes) to weighted spaces. The obtained assertions are used to study sampling and numerical integration in weighted spaces on the real line and weighted spaces with dominating mixed smoothness in the plane. A short chapter deals with the discrepancy for spaces on intervals.


Theory of Besov Spaces

Theory of Besov Spaces

Author: Yoshihiro Sawano

Publisher: Springer

Published: 2018-11-04

Total Pages: 964

ISBN-13: 9811308365

DOWNLOAD EBOOK

This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.