"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
This book brings into focus the synergistic interaction between analysis and geometry by examining a variety of topics in function theory, real analysis, harmonic analysis, several complex variables, and group actions. Krantz's approach is motivated by examples, both classical and modern, which highlight the symbiotic relationship between analysis and geometry. Creating a synthesis among a host of different topics, this book is useful to researchers in geometry and analysis and may be of interest to physicists, astronomers, and engineers in certain areas. The book is based on lectures presented at an NSF-CBMS Regional Conference held in May 1992.
This textbook provides a thorough-yet-accessible introduction to function spaces, through the central concepts of integrability, weakly differentiability and fractionally differentiability. In an essentially self-contained treatment the reader is introduced to Lebesgue, Sobolev and BV-spaces, before being guided through various generalisations such as Bessel-potential spaces, fractional Sobolev spaces and Besov spaces. Written with the student in mind, the book gradually proceeds from elementary properties to more advanced topics such as lower dimensional trace embeddings, fine properties and approximate differentiability, incorporating recent approaches. Throughout, the authors provide careful motivation for the underlying concepts, which they illustrate with selected applications from partial differential equations, demonstrating the relevance and practical use of function spaces. Assuming only multivariable calculus and elementary functional analysis, as conveniently summarised in the opening chapters, A Course in Function Spaces is designed for lecture courses at the graduate level and will also be a valuable companion for young researchers in analysis.
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak–Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent. Features Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful Contains numerous applications Facilitates the unified treatment of seemingly different theoretical and applied problems Includes a number of open problems in the area
The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert and Banach spaces and general linear processes and statistical prediction. Implementation and numerical applications are also covered. The book assumes knowledge of classical probability theory and statistics.
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
This graduate-level textbook is a detailed exposition of key mathematical tools in analysis aimed at students, researchers, and practitioners across science and engineering. Every topic covered has been specifically chosen because it plays a key role outside the field of pure mathematics. Although the treatment of each topic is mathematical in nature, and concrete applications are not delineated, the principles and tools presented are fundamental to exploring the computational aspects of physics and engineering. Readers are expected to have a solid understanding of linear algebra, in Rn and in general vector spaces. Familiarity with the basic concepts of calculus and real analysis, including Riemann integrals and infinite series of real or complex numbers, is also required.