Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.
Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.
The utility of congruence lattices in revealing the structure of general algebras has been recognized since Garrett Birkhoff's pioneering work in the 1930s and 1940s. However, the results presented in this book are of very recent origin: most of them were developed in 1983. The main discovery presented here is that the lattice of congruences of a finite algebra is deeply connected to the structure of that algebra. The theory reveals a sharp division of locally finite varieties of algebras into six interesting new families, each of which is characterized by the behavior of congruences in the algebras. The authors use the theory to derive many new results that will be of interest not only to universal algebraists, but to other algebraists as well. The authors begin with a straightforward and complete development of basic tame congruence theory, a topic that offers great promise for a wide variety of investigations. They then move beyond the consideration of individual algebras to a study of locally finite varieties. A list of open problems closes the work.
This self-contained reference/text presents a thorough account of the theory of real function algebras. Employing the intrinsic approach, avoiding the complexification technique, and generalizing the theory of complex function algebras, this single-source volume includes: an introduction to real Banach algebras; various generalizations of the Stone-Weierstrass theorem; Gleason parts; Choquet and Shilov boundaries; isometries of real function algebras; extensive references; and a detailed bibliography.;Real Function Algebras offers results of independent interest such as: topological conditions for the commutativity of a real or complex Banach algebra; Ransford's short elementary proof of the Bishop-Stone-Weierstrass theorem; the implication of the analyticity or antianalyticity of f from the harmonicity of Re f, Re f(2), Re f(3), and Re f(4); and the positivity of the real part of a linear functional on a subspace of C(X).;With over 600 display equations, this reference is for mathematical analysts; pure, applied, and industrial mathematicians; and theoretical physicists; and a text for courses in Banach algebras and function algebras.
Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory.
The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach alge bras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the re search on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous func tions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RIl]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of £unctions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural func tion algebras".
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Treated in this volume are selected topics in analytic &Ggr;-almost-periodic functions and their representations as &Ggr;-analytic functions in the big-plane; n-tuple Shilov boundaries of function spaces, minimal norm principle for vector-valued functions and their applications in the study of vector-valued functions and n-tuple polynomial and rational hulls. Applications to the problem of existence of n-dimensional complex analytic structures, analytic &Ggr;-almost-periodic structures and structures of &Ggr;-analytic big-manifolds respectively in commutative Banach algebra spectra are also discussed.