FRP

FRP

Author: J. G. Teng

Publisher: John Wiley & Sons

Published: 2002

Total Pages: 280

ISBN-13:

DOWNLOAD EBOOK

Fibre-reinforced polymer (FRP) composites are used to strengthen reinforced concrete (RC) structures. A large amount of research now exists on this. This book brings together all existing research into one volume.


Strengthening Design of Reinforced Concrete with FRP

Strengthening Design of Reinforced Concrete with FRP

Author: Hayder A. Rasheed

Publisher: CRC Press

Published: 2014-12-16

Total Pages: 246

ISBN-13: 1482235595

DOWNLOAD EBOOK

Strengthening Design of Reinforced Concrete with FRP establishes the art and science of strengthening design of reinforced concrete with fiber-reinforced polymer (FRP) beyond the abstract nature of the design guidelines from Canada (ISIS Canada 2001), Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-08). Evolved from thorough cla


FRP-strengthened RC Structures

FRP-strengthened RC Structures

Author: Jin-Guang Teng

Publisher: Wiley

Published: 2023-05-15

Total Pages: 600

ISBN-13: 9780470751237

DOWNLOAD EBOOK

State-of-the-art of the theory and applications surrounding fundamental mechanics of structures strengthened with bonded fibre-reinforced polymer (FRP) reinforcement FRP-strengthened RC Structures provides readers with a comprehensive guide to the fundamental theory that underpins the use of bonded fibre-reinforced polymers (FRP) to strengthen structures. It consolidates the information presented in research papers into one all-encompassing reference on the subject. It provides a self-contained, systematic and thorough treatment of FRP’s uses in concrete, steel, timber and masonry within a unified, theoretical framework. It assumes a basic knowledge of structural engineering in the areas of analysis and design. Brings together all the important research work undertaken on FRP strengthening under one cover, providing the reader with a complete state-of-the-art of the area and the best theoretical models available. Addresses the FRP strengthening of concrete, masonry, steel and timber structures using one unified, and theoretical framework and collating together material currently only available in research papers. Includes 24 chapters that address topics ranging from fundamental issues such as bond behaviour, to more specific issues such as the flexoural strengthening of steel beams. Authored by globally acknowledged leading experts in the field of structural strengthening with FRP composites. FRP-strengthened RC Structures will appeal to researchers and code writers as a core reference, designers as an advanced source of information on design guidelines and solutions, and postgraduate and senior undergraduate students in relevant disciplines as a textbook.


Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer

Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer

Author: Riadh Al-Mahaidi

Publisher: Butterworth-Heinemann

Published: 2018-11-12

Total Pages: 413

ISBN-13: 0128115114

DOWNLOAD EBOOK

Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. Presents worked design examples covering flexural, shear, and axial strengthening Includes complete coverage of FRP in Concrete Repair Explores the most recent guidelines (ACI440.2, 2017; AS5100.8, 2017 and Concrete society technical report no. 55, 2012)


Fibre-reinforced Polymer Reinforcement for Concrete Structures

Fibre-reinforced Polymer Reinforcement for Concrete Structures

Author: Kiang-Hwee Tan

Publisher: World Scientific

Published: 2003

Total Pages: 755

ISBN-13: 9812704868

DOWNLOAD EBOOK

Fibre-reinforced polymer (FRP) reinforcement has been used in construction as either internal or external reinforcement for concrete structures in the past decade. This book provides the latest research findings related to the development, design and application of FRP reinforcement in new construction and rehabilitation works. The topics include FRP properties and bond behaviour, externally bonded reinforcement for flexure, shear and confinement, FRP structural shapes, durability, member behaviour under sustained loads, fatigue loads and blast loads, prestressed FRP tendons, structural strengthening applications, case studies, and codes and standards. Contents: .: Volume 1: Keynote Papers; FRP Materials and Properties; Bond Behaviour; Externally Bonded Reinforcement for Flexure; Externally Bonded Reinforcement for Shear; Externally Bonded Reinforcement for Confinement; FRP Structural Shapes; Volume 2: Durability and Maintenance; Sustained and Fatigue Loads; Prestressed FRP Reinforcement and Tendons; Structural Strengthening; Applications in Masonry and Steel Structures; Field Applications and Case Studies; Codes and Standards. Readership: Upper level graduates, graduate students, academics and researchers in materials science and engineering; practising engineers and project managers


Strengthening of Reinforced Concrete Structures

Strengthening of Reinforced Concrete Structures

Author: L C Hollaway

Publisher: Elsevier

Published: 1999-03-05

Total Pages: 340

ISBN-13: 1855737612

DOWNLOAD EBOOK

The in situ rehabilitation or upgrading of reinforced concrete members using bonded steel plates is an effective, convenient and economic method of improving structural performance. However, disadvantages inherent in the use of steel have stimulated research into the possibility of using fibre reinforced polymer (FRP) materials in its place, providing a non-corrosive, more versatile strengthening system. This book presents a detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforces polymer composite plates. It is based to a large extent on material developed or provided by the consortium which studied the technology of plate bonding to upgrade structural units using carbon fibre / polymer composite materials. The research and trial tests were undertaken as part of the ROBUST project, one of several ventures in the UK Government's DTI-LINK Structural Composites Programme. The book has been designed for practising structural and civil engineers seeking to understand the principles and design technology of plate bonding, and for final year undergraduate and postgraduate engineers studying the principles of highway and bridge engineering and structural engineering. Detailed study of the flexural strengthening of reinforced and prestressed concrete members using fibre reinforced polymer composites Contains in-depth case histories


Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures

Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures

Author: Carlo Pellegrino

Publisher: Springer

Published: 2015-08-25

Total Pages: 406

ISBN-13: 940177336X

DOWNLOAD EBOOK

This book analyses the current knowledge on structural behaviour of RC elements and structures strengthened with composite materials (experimental, analytical and numerical approaches for EBR and NSM), particularly in relation to the above topics, and the comparison of the predictions of the current available codes/recommendations/guidelines with selected experimental results. The book shows possible critical issues (discrepancies, lacunae, relevant parameters, test procedures, etc.) related to current code predictions or to evaluate their reliability, in order to develop more uniform methods and basic rules for design and control of FRP strengthened RC structures. General problems/critical issues are clarified on the basis of the actual experiences, detect discrepancies in existing codes, lacunae in knowledge and, concerning these identified subjects, provide proposals for improvements. The book will help to contribute to promote and consolidate a more qualified and conscious approach towards rehabilitation and strengthening existing RC structures with composites and their possible monitoring.


Non-Metallic (FRP) Reinforcement for Concrete Structures

Non-Metallic (FRP) Reinforcement for Concrete Structures

Author: L. Taerwe

Publisher: CRC Press

Published: 1995-08-03

Total Pages: 738

ISBN-13: 9780419205401

DOWNLOAD EBOOK

Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.


Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites

Strengthening and Rehabilitation of Civil Infrastructures Using Fibre-Reinforced Polymer (FRP) Composites

Author: L C Hollaway

Publisher: Elsevier

Published: 2008-07-18

Total Pages: 415

ISBN-13: 1845694899

DOWNLOAD EBOOK

The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance. The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies. With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening Covers practical considerations including material behaviour, structural design and quality assurance