Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization

Author: Harbir Antil

Publisher: Springer

Published: 2018-10-12

Total Pages: 434

ISBN-13: 1493986368

DOWNLOAD EBOOK

This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.


Optimization with PDE Constraints

Optimization with PDE Constraints

Author: Michael Hinze

Publisher: Springer Science & Business Media

Published: 2008-10-16

Total Pages: 279

ISBN-13: 1402088396

DOWNLOAD EBOOK

Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.


Large-Scale PDE-Constrained Optimization in Applications

Large-Scale PDE-Constrained Optimization in Applications

Author: Subhendu Bikash Hazra

Publisher: Springer Science & Business Media

Published: 2009-12-16

Total Pages: 216

ISBN-13: 3642015026

DOWNLOAD EBOOK

With continuous development of modern computing hardware and applicable - merical methods, computational ?uid dynamics (CFD) has reached certain level of maturity so that it is being used routinely by scientists and engineers for ?uid ?ow analysis. Since most of the real-life applications involve some kind of optimization, it has been natural to extend the use of CFD tools from ?ow simulation to simu- tion based optimization. However, the transition from simulation to optimization is not straight forward, it requires proper interaction between advanced CFD meth- ologies and state-of-the-art optimization algorithms. The ultimate goal is to achieve optimal solution at the cost of few ?ow solutions. There is growing number of - search activities to achieve this goal. This book results from my work done on simulation based optimization problems at the Department of Mathematics, University of Trier, and reported in my postd- toral thesis (”Habilitationsschrift”) accepted by the Faculty-IV of this University in 2008. The focus of the work has been to develop mathematical methods and - gorithms which lead to ef?cient and high performance computational techniques to solve such optimization problems in real-life applications. Systematic development of the methods and algorithms are presented here. Practical aspects of implemen- tions are discussed at each level as the complexity of the problems increase, suppo- ing with enough number of computational examples.


Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization

Author: Lorenz T. Biegler

Publisher: SIAM

Published: 2007-01-01

Total Pages: 335

ISBN-13: 9780898718935

DOWNLOAD EBOOK

Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.


Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3

Author: Roland Platz

Publisher: Springer Nature

Published: 2023-10-06

Total Pages: 208

ISBN-13: 3031370031

DOWNLOAD EBOOK

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Introduction of Uncertainty Quantification Uncertainty Quantification in Dynamics Model Form Uncertainty and Selection incl. Round Robin Challenge Sensor and Information Fusion Virtual Sensing, Certification, and Real-Time Monitoring Surrogate Modeling


Trends in PDE Constrained Optimization

Trends in PDE Constrained Optimization

Author: Günter Leugering

Publisher: Springer

Published: 2014-12-22

Total Pages: 539

ISBN-13: 3319050834

DOWNLOAD EBOOK

Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”, “Shape and Topology Optimization”, “Adaptivity and Model Reduction”, “Discretization: Concepts and Analysis” and “Applications”. Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.


Large-Scale PDE-Constrained Optimization

Large-Scale PDE-Constrained Optimization

Author: Lorenz T. Biegler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 347

ISBN-13: 364255508X

DOWNLOAD EBOOK

Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.


A Certified Reduced Basis Approach to PDE-constrained Optimization

A Certified Reduced Basis Approach to PDE-constrained Optimization

Author: Elizabeth Yi Qian

Publisher:

Published: 2017

Total Pages: 67

ISBN-13:

DOWNLOAD EBOOK

Parameter optimization problems constrained by partial differential equations (PDEs) appear in many science and engineering applications. The PDE usually describes the underlying system or component behavior, while the parameters identify a particular configurations of the component, such as boundary and initial conditions, material properties, and geometry. Solving these optimization problems may require a prohibitively large number of computationally expensive PDE solves, particularly if the parameter dimension is high. It is therefore advantageous to replace expensive high-dimensional PDE solvers (e.g., finite element) with lower-dimension surrogate models. This work builds on the reduced basis (RB) method, a model reduction method that allows efficient and reliable reduced order approximations for a large class of parametrized PDEs. Traditionally, RB models are generated during a computationally expensive offline phase for a certain admissible parameter space. The optimization problem can then be solved efficiently during the online phase. However, since the RB model is only evaluated along the optimization trajectory, building an RB model for the entire admissible parameter set incurs superfluous offline costs. In this thesis, we break from the traditional RB offline/online decomposition and use a trust region framework to adaptiviely build the RB model along the optimization trajectory only. Novel a posteriori error bounds on the RB cost and cost gradient for quadratic cost functionals (e.g., least squares) are presented, and used to guarantee convergence to the optimum of the high-fidelity model. The proposed certified RB trust region approach uses high-fidelity solves to update the RB model only if the approximation is no longer sufficiently accurate, reducing the number of full-fidelity solves required. We consider problems governed by elliptic and parabolic PDEs and present numerical results for a thermal fin model problem in which we are able to reduce the number of full solves necessary for the optimization by up to 86%.