This is a collection of papers on Fragmentation Phenomena. It includes reviews and reports on the latest developments in fragmentation of soft matter and materials (polymers, colloids, cells, droplets and rocks), fragmentation of microscopic objects (atomic clusters and nuclei), general topics and theoretical approaches. The book addresses students and young scientists as well as researchers in theoretical and experimental aspects of fragmentation phenomena.
Transversity 2008, the second workshop on “Transverse polarization phenomena in hard processes” follows the first one held in Como after three years. As in that case, the event comes at the end of a two-years project financed by the Italian Ministry of Education.In the time between the two Workshops, decisive steps towards the revealing of the transverse spin structure of the proton were taken on both the theoretical and experimental sides.The milestone of the first extraction of Transversity and the Sivers function for the u- and d-quarks deserves a special mention. In the same period, historic experiments that in the last decade contributed to the first pioneering measurements in the SIDIS sector, have concluded their data taking, and their place is being taken by upgrades of existing or new facilities. These are the result of the new interesting phenomena which are appearing and call for additional experimental information and novel experimental techniques.Over 80 physicists took part in the Workshop. Equally involved were experimentalists and theoreticians engaged in investigating the nature of transverse spin. The heterogeneous public favoured vivid discussions and fruitful exchange of up-to-date theoretical and experimental ideas on this constantly evolving subject.
The 12th Winter Workshop on Nuclear Dynamics carried on the tradition, started in 1978, of bringing together scientists working in all regimes of nuclear dynamics. This broad range of related topics allows the researcher attending the Workshop to be exposed to work that normally would be considered outside his/her field, but could po tentially add a new dimension to the understanding of his/her work. At Snowbird, we brought together experimentalists working with heavy ion beams from 10 MeV/nucleon up to 200 GeV /nucleon and theoretical physicists working in diverse areas ranging from antisymmetrized fermionic dynamics to perturbative quantum chromo dynamics. Fu ture work at RHIC was discussed also, with presentations from several of the experimen tal groups. In addition, several talks addressed issues of cross-disciplinary relevance, from the study of water-drop-collisions, to the multi-fragmentation of buckyballs. Clearly the field of nuclear dynamics has a bright future. The understanding of the nuclear equation of state in all of its manifestations is being expanded on all fronts both theoretically and experimentally. Future Workshops on Nuclear Dynamics will certainly have much progress to report. Gary D. Westfall Wolfgang Bauer Michigan State Universzty v PREVIOUS WORKSHOPS The following table contains a list of the dates and locations of the previous Winter Workshops on Nuclear Dynamics as well as the members of the organizing committees. The chairpersons of the conferences are underlined.
This conference brought together leading experts on the topic of nuclear dynamics. The focus was on the interaction between experimentalists and theorists. Special attention was given to working out unifying concepts between different energy regimes — from the Coulomb barrier to the ultra-relativistic RHIC domain. The proceedings reflect those efforts.
This nine-volume set LNCS 14104 – 14112 constitutes the refereed workshop proceedings of the 23rd International Conference on Computational Science and Its Applications, ICCSA 2023, held at Athens, Greece, during July 3–6, 2023. The 350 full papers and 29 short papers and 2 PHD showcase papers included in this volume were carefully reviewed and selected from a total of 876 submissions. These nine-volumes includes the proceedings of the following workshops: Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2023); Advanced Processes of Mathematics and Computing Models in Complex Computational Systems (ACMC 2023); Artificial Intelligence supported Medical data examination (AIM 2023); Advanced and Innovative web Apps (AIWA 2023); Assessing Urban Sustainability (ASUS 2023); Advanced Data Science Techniques with applications in Industry and Environmental Sustainability (ATELIERS 2023); Advances in Web Based Learning (AWBL 2023); Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2023); Bio and Neuro inspired Computing and Applications (BIONCA 2023); Choices and Actions for Human Scale Cities: Decision Support Systems (CAHSC-DSS 2023); and Computational and Applied Mathematics (CAM 2023).
These proceedings address the new emerging questions in nuclear dynamics such as fluctuations, nuclear multifragmentation, transport theories and particle production in heavy-ion reactions. Parts of the proceedings are also devoted to the physics of metallic and atomic clusters where, quite often, nuclear concepts and techniques are applied.