Fractional Differential Equations

Fractional Differential Equations

Author: Anatoly Kochubei

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-02-19

Total Pages: 528

ISBN-13: 3110571668

DOWNLOAD EBOOK

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.


Fractals and Fractional Calculus in Continuum Mechanics

Fractals and Fractional Calculus in Continuum Mechanics

Author: Alberto Carpinteri

Publisher: Springer

Published: 2014-05-04

Total Pages: 352

ISBN-13: 3709126649

DOWNLOAD EBOOK

The book is characterized by the illustration of cases of fractal, self-similar and multi-scale structures taken from the mechanics of solid and porous materials, which have a technical interest. In addition, an accessible and self-consistent treatment of the mathematical technique of fractional calculus is provided, avoiding useless complications.


Fractional Differential Equations

Fractional Differential Equations

Author: Zhi-Zhong Sun

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-08-24

Total Pages: 465

ISBN-13: 3110615304

DOWNLOAD EBOOK

Starting with an introduction to fractional derivatives and numerical approximations, this book presents finite difference methods for fractional differential equations, including time-fractional sub-diffusion equations, time-fractional wave equations, and space-fractional differential equations, among others. Approximation methods for fractional derivatives are developed and approximate accuracies are analyzed in detail.


Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models

Fractional Calculus And Waves In Linear Viscoelasticity: An Introduction To Mathematical Models

Author: Francesco Mainardi

Publisher: World Scientific

Published: 2010-05-18

Total Pages: 368

ISBN-13: 1908978570

DOWNLOAD EBOOK

This monograph provides a comprehensive overview of the author's work on the fields of fractional calculus and waves in linear viscoelastic media, which includes his pioneering contributions on the applications of special functions of the Mittag-Leffler and Wright types.It is intended to serve as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature given in the huge general bibliography.This book is likely to be of interest to applied scientists and engineers./a


Progress in Intelligent Decision Science

Progress in Intelligent Decision Science

Author: Tofigh Allahviranloo

Publisher: Springer Nature

Published: 2021-01-29

Total Pages: 992

ISBN-13: 3030665011

DOWNLOAD EBOOK

This book contains the topics of artificial intelligence and deep learning that do have much application in real-life problems. The concept of uncertainty has long been used in applied science, especially decision making and a logical decision must be made in the field of uncertainty or in the real-life environment that is formed and combined with vague concepts and data. The chapters of this book are connected to the new concepts and aspects of decision making with uncertainty. Besides, other chapters are involved with the concept of data mining and decision making under uncertain computations.


Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I

Author: Carl M. Bender

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 605

ISBN-13: 1475730691

DOWNLOAD EBOOK

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.


Linear Fractional Diffusion-Wave Equation for Scientists and Engineers

Linear Fractional Diffusion-Wave Equation for Scientists and Engineers

Author: Yuriy Povstenko

Publisher: Birkhäuser

Published: 2015-07-03

Total Pages: 470

ISBN-13: 3319179543

DOWNLOAD EBOOK

This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and fractals for graduate and postgraduate students. The volume will also serve as a valuable reference guide for specialists working in applied mathematics, physics, geophysics and the engineering sciences.


The Mathematics of Diffusion

The Mathematics of Diffusion

Author: John Crank

Publisher: Oxford University Press

Published: 1979

Total Pages: 428

ISBN-13: 9780198534112

DOWNLOAD EBOOK

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.