Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.
Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.
The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
The series is devoted to the publication of high-level monographs which cover progresses in fractional calculus research in mathematics and applications in physics, mechanics, engineering and biology etc. Methodological aspects e.g., theory, modeling and computational methods are presented from mathematical point of view, and emphases are placed in computer simulation, analysis, design and control of application-oriented issues in various scientific disciplines. It is designed for mathematicians, and researchers using fractional calculus as a tool in the field of physics, mechanics, engineering and biology. Contributions which are interdisciplinary and which stimulate further research at the crossroads of sciences and engineering are particularly welcomed. Editor-in-chief: Changpin Li, Shanghai University, China Editorial Board: Virginia Kiryakova, Bulgarian Academy of Sciences, Bulgaria Francesco Mainardi, University of Bologna, Italy Dragan Spasic, University of Novi Sad, Serbia Bruce Ian Henry, University of New South Wales, Australia YangQuan Chen, University of California, Merced, USA Please submit book proposals to Leonardo Milla, [email protected]
A collection of papers dealing with a broad range of topics in mathematical economics, game theory and economic dynamics. The contributions present both theoretical and applied research. The volume is dedicated to Mordecai Kurz. The papers were presented in a special symposium co-hosted by the Stanford University Department of Economics and by the Stanford Institute of Economic Policy Research in August 2002.
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
Box and Jenkins (1970) made the idea of obtaining a stationary time series by differencing the given, possibly nonstationary, time series popular. Numerous time series in economics are found to have this property. Subsequently, Granger and Joyeux (1980) and Hosking (1981) found examples of time series whose fractional difference becomes a short memory process, in particular, a white noise, while the initial series has unbounded spectral density at the origin, i.e. exhibits long memory.Further examples of data following long memory were found in hydrology and in network traffic data while in finance the phenomenon of strong dependence was established by dramatic empirical success of long memory processes in modeling the volatility of the asset prices and power transforms of stock market returns.At present there is a need for a text from where an interested reader can methodically learn about some basic asymptotic theory and techniques found useful in the analysis of statistical inference procedures for long memory processes. This text makes an attempt in this direction. The authors provide in a concise style a text at the graduate level summarizing theoretical developments both for short and long memory processes and their applications to statistics. The book also contains some real data applications and mentions some unsolved inference problems for interested researchers in the field./a
The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.
Streamflow forecasting is of great importance to water resources management and flood defense. On the other hand, a better understanding of the streamflow process is fundamental for improving the skill of streamflow forecasting. The methods for forecasting streamflows may fall into two general classes: process-driven methods and data-driven methods. Equivalently, methods for understanding streamflow processes may also be broken into two categories: physically-based methods and mathematically-based methods. This thesis focuses on using mathematically-based methods to analyze stochasticity and nonlinearity of streamflow processes based on univariate historic streamflow records, and presents data-driven models that are also mainly based on univariate streamflow time series. Six streamflow processes of five rivers in different geological regions are investigated for stochasticity and nonlinearity at several characteristic timescales.