Fractals: A User's Guide for the Natural Sciences explains Mandelbrot's fractal geometry and describes some of its applications in the natural world. Written to enable students and researchers to master the methods of this timely subject, the book steers a middle course between the formality of many papers in mathematics and the informality of picture-orientated books on fractals. It is both a logically developed text and an essential `fractals for users' handbook.
Historically, science has developed by reducing complex situations to simple ones, analyzing the components and synthesizing the original situation. While this 'reductionist' approach has been extremely successful, there are phenomena of such complexity that one cannot simplify them without eliminating the problem itself. Recently, attention has turned to such problems in a wide variety of fields. This is in part due to the development of fractal geometry. Fractal geometry provides the mathematical tools for handling complexity. The present volume is a collection of papers that deal with the application of fractals in both traditional scientific disciplines and in applied fields. This volume shows the advance of our understanding of complex phenomena across a spectrum of disciplines. While these diverse fields work on very different problems, fractals provide a unifying formalism for approaching these problems.
This book contains state of the art contributions to this rapidly growing research area. It will be of essential value to mathematicians, physicists and engineers working in the fields of fractals and related phenomena and to researchers working in medicine and the life sciences.
During the last couple of years, fractals have been shown to represent the common aspects of many complex processes occurring in an unusually diverse range of fields including biology, chemistry, earth sciences, physics and technology. Using fractal geometry as a language, it has become possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iteractive functions, colloidal aggregation, biological pattern formation and inhomogenous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.This volume contains a selection of high quality papers that discuss the latest developments in the research of fractals. It is divided into 5 sections and contains altogether 64 papers. Each paper is written by a well known author or authors in the field. Beginning each section is a short introduction, written by a prominent author, which gives a brief overview of the topics discussed in the respective sections.
A modern up-to-date introduction for readers outside statistical physics. It puts emphasis on a clear understanding of concepts and methods and provides the tools that can be of immediate use in applications.
Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.
In the Earth Sciences, the concept of fractals and scale invariance is well-recognized in many natural objects. However, the use of fractals for spatial and temporal analyses of natural hazards has been less used (and accepted) in the Earth Sciences. This book brings together twelve contributions that emphasize the role of fractal analyses in natural hazard research, including landslides, wildfires, floods, catastrophic rock fractures and earthquakes. A wide variety of spatial and temporal fractal-related approaches and techniques are applied to 'natural' data, experimental data, and computer simulations. These approaches include probabilistic hazard analysis, cellular-automata models, spatial analyses, temporal variability, prediction, and self-organizing behaviour. The main aims of this volume are to present current research on fractal analyses as applied to natural hazards, and to stimulate the curiosity of advanced Earth Science students and researchers in the use of fractals analyses for the better understanding of natural hazards.
Fractals are intimately related to the nonlinear processes in nature. Whereas studies of dynamics may lead to the chaotic phenomena, analysis of the underlying geometry leads to fractals. Currently, the field of fractals represents a fast developing research area.This publication contains state-of-the-art contributions exploring a spread of applications right across the disciplines, from physics and mathematics, through astronomy, biophysics, ecology and geography to image processing, medicine and turbulence. It will prove a valuable addition to the library of many a scientist interested in the field of fractals and related phenomena.
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.