Foundations of Global Genetic Optimization

Foundations of Global Genetic Optimization

Author: Robert Schaefer

Publisher: Springer

Published: 2007-07-07

Total Pages: 227

ISBN-13: 354073192X

DOWNLOAD EBOOK

Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.


The Simple Genetic Algorithm

The Simple Genetic Algorithm

Author: Michael D. Vose

Publisher: MIT Press

Published: 1999

Total Pages: 650

ISBN-13: 9780262220583

DOWNLOAD EBOOK

Content Description #"A Bradford book."#Includes bibliographical references (p.) and index.


Global Optimization Methods in Geophysical Inversion

Global Optimization Methods in Geophysical Inversion

Author: Mrinal K. Sen

Publisher: Cambridge University Press

Published: 2013-02-21

Total Pages: 303

ISBN-13: 1107011906

DOWNLOAD EBOOK

An up-to-date overview of global optimization methods used to formulate and interpret geophysical observations, for researchers, graduate students and professionals.


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


Genetic Algorithms and Applications for Stock Trading Optimization

Genetic Algorithms and Applications for Stock Trading Optimization

Author: Kapoor, Vivek

Publisher: IGI Global

Published: 2021-06-25

Total Pages: 262

ISBN-13: 1799841065

DOWNLOAD EBOOK

Genetic algorithms (GAs) are based on Darwin’s theory of natural selection and survival of the fittest. They are designed to competently look for solutions to big and multifaceted problems. Genetic algorithms are wide groups of interrelated events with divided steps. Each step has dissimilarities, which leads to a broad range of connected actions. Genetic algorithms are used to improve trading systems, such as to optimize a trading rule or parameters of a predefined multiple indicator market trading system. Genetic Algorithms and Applications for Stock Trading Optimization is a complete reference source to genetic algorithms that explains how they might be used to find trading strategies, as well as their use in search and optimization. It covers the functions of genetic algorithms internally, computer implementation of pseudo-code of genetic algorithms in C++, technical analysis for stock market forecasting, and research outcomes that apply in the stock trading system. This book is ideal for computer scientists, IT specialists, data scientists, managers, executives, professionals, academicians, researchers, graduate-level programs, research programs, and post-graduate students of engineering and science.


Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2020-12-05

Total Pages: 1534

ISBN-13: 1799880990

DOWNLOAD EBOOK

Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.


Transactions on Computational Collective Intelligence X

Transactions on Computational Collective Intelligence X

Author: Ngoc-Thanh Nguyen

Publisher: Springer

Published: 2013-05-20

Total Pages: 218

ISBN-13: 364238496X

DOWNLOAD EBOOK

These transactions publish research in computer-based methods of computational collective intelligence (CCI) and their applications in a wide range of fields such as the Semantic Web, social networks, and multi-agent systems. TCCI strives to cover new methodological, theoretical and practical aspects of CCI understood as the form of intelligence that emerges from the collaboration and competition of many individuals (artificial and/or natural). The application of multiple computational intelligence technologies, such as fuzzy systems, evolutionary computation, neural systems, consensus theory, etc., aims to support human and other collective intelligence and to create new forms of CCI in natural and/or artificial systems. This tenth issue contains 13 carefully selected and thoroughly revised contributions.


Stable Mutations for Evolutionary Algorithms

Stable Mutations for Evolutionary Algorithms

Author: Andrzej Obuchowicz

Publisher: Springer

Published: 2018-09-21

Total Pages: 175

ISBN-13: 3030015483

DOWNLOAD EBOOK

This book presents a set of theoretical and experimental results that describe the features of the wide family of α-stable distributions (the normal distribution also belongs to this class) and their various applications in the mutation operator of evolutionary algorithms based on real-number representation of the individuals, and, above all, equip these algorithms with features that enrich their effectiveness in solving multi-modal, multi-dimensional global optimization problems. The overall conclusion of the research presented is that the appropriate choice of probabilistic model of the mutation operator for an optimization problem is crucial. Mutation is one of the most important operations in stochastic global optimization algorithms in the n-dimensional real space. It determines the method of search space exploration and exploitation. Most applications of these algorithms employ the normal mutation as a mutation operator. This choice is justified by the central limit theorem but is associated with a set of important limitations. Application of α-stable distributions allows more flexible evolutionary models to be obtained than those with the normal distribution. The book presents theoretical analysis and simulation experiments, which were selected and constructed to expose the most important features of the examined mutation techniques based on α-stable distributions. It allows readers to develop a deeper understanding of evolutionary processes with stable mutations and encourages them to apply these techniques to real-world engineering problems.


Applied Parallel and Scientific Computing

Applied Parallel and Scientific Computing

Author: Kristján Jónasson

Publisher: Springer

Published: 2012-02-16

Total Pages: 364

ISBN-13: 3642281516

DOWNLOAD EBOOK

The two volume set LNCS 7133 and LNCS 7134 constitutes the thoroughly refereed post-conference proceedings of the 10th International Conference on Applied Parallel and Scientific Computing, PARA 2010, held in Reykjavík, Iceland, in June 2010. These volumes contain three keynote lectures, 29 revised papers and 45 minisymposia presentations arranged on the following topics: cloud computing, HPC algorithms, HPC programming tools, HPC in meteorology, parallel numerical algorithms, parallel computing in physics, scientific computing tools, HPC software engineering, simulations of atomic scale systems, tools and environments for accelerator based computational biomedicine, GPU computing, high performance computing interval methods, real-time access and processing of large data sets, linear algebra algorithms and software for multicore and hybrid architectures in honor of Fred Gustavson on his 75th birthday, memory and multicore issues in scientific computing - theory and praxis, multicore algorithms and implementations for application problems, fast PDE solvers and a posteriori error estimates, and scalable tools for high performance computing.


Computational Intelligence in Sensor Networks

Computational Intelligence in Sensor Networks

Author: Bijan Bihari Mishra

Publisher: Springer

Published: 2018-05-22

Total Pages: 496

ISBN-13: 366257277X

DOWNLOAD EBOOK

This book discusses applications of computational intelligence in sensor networks. Consisting of twenty chapters, it addresses topics ranging from small-scale data processing to big data processing realized through sensor nodes with the help of computational approaches. Advances in sensor technology and computer networks have enabled sensor networks to evolve from small systems of large sensors to large nets of miniature sensors, from wired communications to wireless communications, and from static to dynamic network topology. In spite of these technological advances, sensor networks still face the challenges of communicating and processing large amounts of imprecise and partial data in resource-constrained environments. Further, optimal deployment of sensors in an environment is also seen as an intractable problem. On the other hand, computational intelligence techniques like neural networks, evolutionary computation, swarm intelligence, and fuzzy systems are gaining popularity in solving intractable problems in various disciplines including sensor networks. The contributions combine the best attributes of these two distinct fields, offering readers a comprehensive overview of the emerging research areas and presenting first-hand experience of a variety of computational intelligence approaches in sensor networks.