This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with 'quick questions' to spur practice in basic computations, together with more challenging multi-part exercises at the end of each chapter. Advanced concepts like the quantum nature of energy and radiation are developed as needed. The text's approach and level bridge the wide gap between introductory astronomy texts for non-science majors and advanced undergraduate texts for astrophysics majors.
Written by one of today’s most highly respected astrophysicists, Foundations of High-Energy Astrophysics is an introduction to the mathematical and physical techniques used in the study of high-energy astrophysics. Here, Mario Vietri approaches the basics of high-energy astrophysics with an emphasis on underlying physical processes as opposed to a more mathematical approach. Alongside more traditional topics, Vietri presents new subjects increasingly considered crucial to understanding high-energy astrophysical sources, including the electrodynamics of cosmic sources, new developments in the theory of standard accretion disks, and the physics of coronae, thick disks, and accretion onto magnetized objects. The most thorough and engaging survey of high-energy astrophysics available today, Foundations of High-Energy Astrophysics introduces the main physical processes relevant to the field in a rigorous yet accessible way, while paying careful attention to observational issues. Vietri’s book will quickly become a classic text for students and active researchers in astronomy and astrophysics. Those in adjoining fields will also find it a valuable addition to their personal libraries.
An Introduction to Modern Astrophysics is a comprehensive, well-organized and engaging text covering every major area of modern astrophysics, from the solar system and stellar astronomy to galactic and extragalactic astrophysics, and cosmology. Designed to provide students with a working knowledge of modern astrophysics, this textbook is suitable for astronomy and physics majors who have had a first-year introductory physics course with calculus. Featuring a brief summary of the main scientific discoveries that have led to our current understanding of the universe; worked examples to facilitate the understanding of the concepts presented in the book; end-of-chapter problems to practice the skills acquired; and computational exercises to numerically model astronomical systems, the second edition of An Introduction to Modern Astrophysics is the go-to textbook for learning the core astrophysics curriculum as well as the many advances in the field.
Recent discoveries in astronomy have revolutionized the field of cosmology. While many long-standing questions in cosmology have now been answered, the new data pose new mysteries such as the nature of the "dark energy" that dominates the universe. This second edition provides an accessible and thorough text on the physics of cosmology and a lively account of the modern concordance model of the universe, from the big bang to a distant future dominated by dark energy.
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.
The Fundamentals of Modern Astrophysics provides an overview of the modern science of astrophysics. It covers the Sun, Solar System bodies, exoplanets, stars, and star life cycle, planetary systems origin and evolution, basics of astrobiology, our galaxy the Milky Way, other galaxies and galactic clusters, a general view of the Universe, its structure, evolution and fate, modern views and advanced models of cosmology as well as the synergy of micro- and macro physics, standard model, superstring theory, multiversity and worm holes. The main concepts of modern astrophysics and prospects for future studies are accompanied by numerous illustrations and a summary of the advanced projects at various astronomical facilities and space missions. Dr. Marov guides readers through a maze of complicated topics to demystify the field and open its wonders to all.
"An Introduction to Modern Astrophysics, "Second Edition has been thoroughly revised to reflect the dramatic changes and advancements in astrophysics that have occurred over the past decade. The Second Edition of this market-leading book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena. The Tools of Astronomy: The Celestial Sphere, Celestial Mechanics, The Continuous Spectrum of Light, The Theory of Special Relativity, The Interaction of Light and Matter, Telescopes; The Nature of Stars: Binary Systems and Stellar Parameters, The Classification of Stellar Spectra, Stellar Atmospheres, The Interiors of Stars, The Sun, The Process of Star Formation, Post-Main-Sequence Stellar Evolution, Stellar Pulsation, Supernovae, The Degenerate Remnants of Stars, Black Holes, Close Binary Star Systems; Planetary Systems: Physical Processes in the Solar System, The Terrestrial Planets, The Jovian Worlds, Minor Bodies of the Solar System, The Formation of Planetary Systems; Galaxies and the Universe: The Milky Way Galaxy, The Nature of Galaxies, Galactic Evolution, The Structure of the Universe, Active Galaxies, Cosmology, The Early Universe; Astronomical and Physical Constants, Unit Conversions Between SI and cgs, Solar System Data, The Constellations, The Brightest Stars, The Nearest Stars, Stellar Data, The Messier Catalog, Constants, A Constants Module for Fortran 95 (Available as a C++ header file), Orbits, A Planetary Orbit Code (Available as Fortran 95 and C++ command line versions, and Windows GUI), TwoStars, A Binary Star Code (Generates synthetic light and radial velocity curves; available as Fortran 95 and C++ command line versions, and Windows GUI), StatStar, A Stellar Structure Code (Available as Fortran 95 and C++ command line versions, and Windows GUI), StatStar, Stellar Models, Galaxy, A Tidal Interaction Code (Available as Java), WMAP Data. For all readers interested in moden astrophysics.
Fundamental Astronomy is a well-balanced, comprehensive introduction to classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. This is the fifth edition of the successful undergraduate textbook and reference work. It has been extensively modernized and extended in the parts dealing with extragalactic astronomy and cosmology. You will also find augmented sections on the solar system, extrasolar planets and astrobiology. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference work for dedicated amateur astronomers.