Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.
Galaxies are vast ensembles of stars, gas and dust, embedded in dark matter halos. They are the basic building blocks of the Universe, gathered in groups, clusters and super-clusters. They exist in many forms, either as spheroids or disks. Classifications, such as the Hubble sequence (based on mass concentration and gas fraction) and the colormagnitude diagram (which separates a blue cloud from a red sequence) help to understand their formation and evolution. Galaxies spend a large part of their lives in the blue cloud, forming stars as spiral or dwarf galaxies. Then, via a mechanism that is still unclear, they stop forming stars and quietly end in the red sequence, as spheroids. This transformation may be due to galaxy interactions, or because of the feedback of active nuclei, through the energy released by their central super-massive black holes. These mechanisms could explain the history of cosmic star formation, the rate of which was far greater in the first half of the UniverseÂs life. Galaxies delves into all of these surrounding subjects in six chapters written by dedicated, specialist astronomers and researchers in the field, from their numerical simulations to their evolutions.
Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters
This review of the most up-to-date observational and theoretical information concerning the chemical evolution of the Milky Way compares the abundances derived from field stars and clusters, giving information on the abundances and dynamics of gas.
The formation and evolution of galaxies is one of the most important topics in modern astrophysics. Secular evolution refers to the relatively slow dynamical evolution due to internal processes induced by a galaxy's spiral arms, bars, galactic winds, black holes and dark matter haloes. It plays an important role in the evolution of spiral galaxies with major consequences for galactic bulges, the transfer of angular momentum, and the distribution of a galaxy's constituent stars, gas and dust. This internal evolution is in turn the key to understanding and testing cosmological models of galaxy formation and evolution. Based on the twenty-third Winter School of the Canary Islands Institute of Astrophysics, this volume presents reviews from nine world-renowned experts on the observational and theoretical research into secular processes, and what these processes can tell us about the structure and formation of galaxies. The volume provides a firm grounding for graduate students and early career researchers working on galactic dynamics and galaxy evolution.
"These are the proceedings of the international conference "Formation and Evolution of Galaxy Disks" organized by the Specola Vaticana (the Vatican Observatory). The meeting hosted 198 participants from 26 countries. The program consisted of 61 talks and about 130 poster papers. In 2000 the Vatican Observatory organized a conference on Galaxy Disks and Disk Galaxies, the proceedings of which were published in ASP Conference Series Vol. 230. Since that time, a great amount of work has been done in this very active field. October 2007 was deemed an appropriate time to hold another similar conference where outstanding senior and junior astronomers in this field could air new results. The conference was focused on the formation and evolution of galaxy disks and covered the following topics: (1) properties of nearby galaxy disks; (2) interstellar medium, star formation, and chemical evolution; (3) disk edges, outskirts, and environment; (4) accretion onto disks, interactions, and mergers; (5) secular evolution of disks and bar/spiral driven evolution of galaxies; (6) evolution of disk structural properties; and (7) disk formation in a hierarchical universe. This books is of interest for researchers in extragalactic astronomy. It presents an overview of the relevant results and the progress made in the field in the last seven years."--Publisher's website
Delineating the huge strides taken in cosmology in the past ten years, this much-anticipated second edition of Malcolm Longair's highly appreciated textbook has been extensively and thoroughly updated. It tells the story of modern astrophysical cosmology from the perspective of one of its most important and fundamental problems – how did the galaxies come about? Longair uses this approach to introduce the whole of what may be called "classical cosmology". What’s more, he describes how the study of the origin of galaxies and larger-scale structures in the Universe has provided us with direct information about the physics of the very early Universe.
Studies of stellar formation in galaxies have a profound impact on our understanding of the present and the early universe. The book describes complex physical processes involved in the creation of stars and during their young lives. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma -rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued.