High-level, explicit treatment of the principle of general covariance as applied to electromagnetics examines the natural invariance of the Maxwell equations, general properties of the medium, nonuniformity, anisotropy and general coordinates in three-space, reciprocity and nonreciprocity, and matter-free space with a gravitational field. 1962 edition.
Providing an ideal transition from introductory to advanced concepts, Electromagnetics, Second Edition builds a foundation that allows electrical engineers to confidently proceed with the development of advanced EM studies, research, and applications. This second edition of a popular text continues to offer coverage that spans the entire field, from electrostatics to the integral solutions of Maxwell’s equations. The book provides a firm grounding in the fundamental concepts of electromagnetics and bolsters understanding through the use of classic examples in shielding, transmission lines, waveguides, propagation through various media, radiation, antennas, and scattering. Mathematical appendices present helpful background information in the areas of Fourier transforms, dyadics, and boundary value problems. The second edition adds a new and extensive chapter on integral equation methods with applications to guided waves, antennas, and scattering. Utilizing the engaging style that made the first edition so appealing, this second edition continues to emphasize the most enduring and research-critical electromagnetic principles.
Electromagnetic Boundary Problems introduces the formulation and solution of Maxwell's equations describing electromagnetism. Based on a one-semester graduate-level course taught by the authors, the text covers material parameters, equivalence principles, field and source (stream) potentials, and uniqueness, as well as:Provides analytical solutions
This book covers the homogenization principles and mixing rules for determining the macroscopic dielectric and magnetic properties of different types of media. Sihvola (electromagnetics, Helsinki U. of Technology, Finland) discusses subjects such as the characteristic differences between a mixture and its parts, and ways that mixing results are applied to different materials in geophysics and biology. Distributed by INSPEC. Annotation copyrighted by Book News, Inc., Portland, OR
This text is intended to help expand knowledge of electromagnetic theory. It integrates principles of quantum physics to electromagnetics with the aim of producing electromagnetic devices with more desirable performance features.
This is the second edition of a popular work offering a unique introduction to Clifford algebras and spinors. The beginning chapters could be read by undergraduates; vectors, complex numbers and quaternions are introduced with an eye on Clifford algebras. The next chapters will also interest physicists, and include treatments of the quantum mechanics of the electron, electromagnetism and special relativity with a flavour of Clifford algebras. This edition has three new chapters, including material on conformal invariance and a history of Clifford algebras.
Sculptured thin films (STFs) are a class of nanoengineered materials with properties that can be designed and realized in a controllable manner using physical vapor deposition. This text, presented as a course at the SPIE Optical Science and Technology Symposium, couples detailed knowledge of thin-film morphology with the optical response characteristics of STF devices. An accompanying CD contains Mathematica programs for use with the presented formalisms. Thus, readers will learn to design and engineer STF materials and devices for future applications, particularly with optical applications. Graduate students in optics and practicing optical engineers will find the text valuable, as well as those interested in emerging nanotechnologies for optical devices.
The book discusses the foundations of intelligent quantum information processing applied to several real-life engineering problems, including intelligent quantum systems, intelligent quantum communication, intelligent process optimization, and intelligent quantum distributed networks. This book: • Showcases a detailed overview of different quantum machine learning algorithmic frameworks. • Presents real-life case studies and applications. • Provides an in-depth analysis of quantum mechanical principles. • Provides a step-by-step guide in the build-up of quantum inspired/quantum intelligent information processing systems. • Provides a video demonstration on each chapter for better understanding. It will serve as an ideal reference text for graduate students and academic researchers in fields such as electrical engineering, electronics and communication engineering, computer engineering, and information technology.
Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.