Formal Methods for Hardware Verification

Formal Methods for Hardware Verification

Author: Marco Bernardo

Publisher: Springer Science & Business Media

Published: 2006-05-15

Total Pages: 250

ISBN-13: 3540343040

DOWNLOAD EBOOK

This book presents 8 papers accompanying the lectures of leading researchers given at the 6th edition of the International School on Formal Methods for the Design of Computer, Communication and Software Systems (SFM 2006). SFM 2006 was devoted to formal techniques for hardware verification and covers several aspects of the hardware design process, including hardware design languages and simulation, property specification formalisms, automatic test pattern generation, symbolic trajectory evaluation, and more.


Formal Hardware Verification

Formal Hardware Verification

Author: Thomas Kropf

Publisher: Springer Science & Business Media

Published: 1997-08-27

Total Pages: 388

ISBN-13: 9783540634751

DOWNLOAD EBOOK

This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.


Formal Methods in Computer Science

Formal Methods in Computer Science

Author: Jiacun Wang

Publisher: CRC Press

Published: 2019-06-21

Total Pages: 279

ISBN-13: 1498775357

DOWNLOAD EBOOK

This textbook gives students a comprehensive introduction to formal methods and their application in software and hardware specification and verification. It has three parts: The first part introduces some fundamentals in formal methods, including set theory, functions, finite state machines, and regular expressions. The second part focuses on logi


Hardware Design Verification

Hardware Design Verification

Author: William K. C. Lam

Publisher: Prentice Hall

Published: 2005

Total Pages: 585

ISBN-13: 9780131433472

DOWNLOAD EBOOK

The Practical, Start-to-Finish Guide to Modern Digital Design Verification As digital logic designs grow larger and more complex, functional verification has become the number one bottleneck in the design process. Reducing verification time is crucial to project success, yet many practicing engineers have had little formal training in verification, and little exposure to the newest solutions.Hardware Design Verificationsystematically presents today's most valuable simulation-based and formal verification techniques, helping test and design engineers choose the best approach for each project, quickly gain confidence in their designs, and move into fabrication far more rapidly. College students will find that coverage of verification principles and common industry practices will help them prepare for jobs as future verification engineers. Author William K. Lam, one of the world's leading experts in design verification, is a recent winner of the Chairman's Award for Innovation, Sun Microsystems' most prestigious technical achievement award. Drawing on his wide-ranging experience, he introduces the foundational principles of verification, presents traditional techniques that have survived the test of time, and introduces emerging techniques for today's most challenging designs. Throughout, Lam emphasizes practical examples rather than mathematical proofs; wherever advanced math is essential, he explains it clearly and accessibly. Coverage includes Simulation-based versus formal verification: advantages, disadvantages, and tradeoffs Coding for verification: functional and timing correctness, syntactical and structure checks, simulation performance, and more Simulator architectures and operations, including event-driven, cycle-based, hybrid, and hardware-based simulators Testbench organization, design, and tools: creating a fast, efficient test environment Test scenarios and assertion: planning, test cases, test generators, commercial and Verilog assertions, and more Ensuring complete coverage, including code, parameters, functions, items, and cross-coverage The verification cycle: failure capture, scope reduction, bug tracking, simulation data dumping, isolation of underlying causes, revision control, regression, release mechanisms, and tape-out criteria An accessible introduction to the mathematics and algorithms of formal verification, from Boolean functions to state-machine equivalence and graph algorithms Decision diagrams, equivalence checking, and symbolic simulation Model checking and symbolic computation Simply put,Hardware Design Verificationwill help you improve and accelerate your entire verification process--from planning through tape-out--so you can get to market faster with higher quality designs.


Certified Programming with Dependent Types

Certified Programming with Dependent Types

Author: Adam Chlipala

Publisher: MIT Press

Published: 2013-12-06

Total Pages: 437

ISBN-13: 0262317885

DOWNLOAD EBOOK

A handbook to the Coq software for writing and checking mathematical proofs, with a practical engineering focus. The technology of mechanized program verification can play a supporting role in many kinds of research projects in computer science, and related tools for formal proof-checking are seeing increasing adoption in mathematics and engineering. This book provides an introduction to the Coq software for writing and checking mathematical proofs. It takes a practical engineering focus throughout, emphasizing techniques that will help users to build, understand, and maintain large Coq developments and minimize the cost of code change over time. Two topics, rarely discussed elsewhere, are covered in detail: effective dependently typed programming (making productive use of a feature at the heart of the Coq system) and construction of domain-specific proof tactics. Almost every subject covered is also relevant to interactive computer theorem proving in general, not just program verification, demonstrated through examples of verified programs applied in many different sorts of formalizations. The book develops a unique automated proof style and applies it throughout; even experienced Coq users may benefit from reading about basic Coq concepts from this novel perspective. The book also offers a library of tactics, or programs that find proofs, designed for use with examples in the book. Readers will acquire the necessary skills to reimplement these tactics in other settings by the end of the book. All of the code appearing in the book is freely available online.


Verification of Reactive Systems

Verification of Reactive Systems

Author: Klaus Schneider

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 608

ISBN-13: 3662107783

DOWNLOAD EBOOK

This book is a solid foundation of the most important formalisms used for specification and verification of reactive systems. In particular, the text presents all important results on m-calculus, w-automata, and temporal logics, shows the relationships between these formalisms and describes state-of-the-art verification procedures for them. It also discusses advantages and disadvantages of these formalisms, and shows up their strengths and weaknesses. Most results are given with detailed proofs, so that the presentation is almost self-contained. Includes all definitions without relying on other material Proves all theorems in detail Presents detailed algorithms in pseudo-code for verification as well as translations to other formalisms


A Roadmap for Formal Property Verification

A Roadmap for Formal Property Verification

Author: Pallab Dasgupta

Publisher: Springer Science & Business Media

Published: 2007-01-19

Total Pages: 260

ISBN-13: 1402047584

DOWNLOAD EBOOK

Integrating formal property verification (FPV) into an existing design process raises several interesting questions. This book develops the answers to these questions and fits them into a roadmap for formal property verification – a roadmap that shows how to glue FPV technology into the traditional validation flow. The book explores the key issues in this powerful technology through simple examples that mostly require no background on formal methods.


Finding Your Way Through Formal Verification

Finding Your Way Through Formal Verification

Author: Bernard Murphy

Publisher: Createspace Independent Publishing Platform

Published: 2018-03-06

Total Pages: 134

ISBN-13: 9781986274111

DOWNLOAD EBOOK

There are already many books on formal verification, from academic to application-centric, and from tutorials for beginners to guides for advanced users. Many are excellent for their intended purpose; we recommend a few at the end of this book. But most start from the assumption that you have already committed to becoming a hands-on expert (or in some cases that you already are an expert). We feel that detailed tutorials are not the easiest place to extract the introductory view many of us are looking for - background, a general idea of how methods work, applications and how formal verification is managed in the overall verification objective. Since we're writing for a fairly wide audience, we cover some topics that some of you may consider elementary (why verification is hard), some we hope will be of general interest (elementary understanding of the technology) and others that may not immediately interest some readers (setting up a formal verification team). What we intentionally do not cover at all is how to become a hands-on expert.


Formal Verification of Floating-Point Hardware Design

Formal Verification of Floating-Point Hardware Design

Author: David M. Russinoff

Publisher: Springer

Published: 2018-09-12

Total Pages: 382

ISBN-13: 9783319955124

DOWNLOAD EBOOK

This is the first book to focus on the problem of ensuring the correctness of floating-point hardware designs through mathematical methods. Formal Verification of Floating-Point Hardware Design advances a verification methodology based on a unified theory of register-transfer logic and floating-point arithmetic that has been developed and applied to the formal verification of commercial floating-point units over the course of more than two decades, during which the author was employed by several major microprocessor design companies. The book consists of five parts, the first two of which present a rigorous exposition of the general theory based on the first principles of arithmetic. Part I covers bit vectors and the bit manipulation primitives, integer and fixed-point encodings, and bit-wise logical operations. Part II addresses the properties of floating-point numbers, the formats in which they are encoded as bit vectors, and the various modes of floating-point rounding. In Part III, the theory is extended to the analysis of several algorithms and optimization techniques that are commonly used in commercial implementations of elementary arithmetic operations. As a basis for the formal verification of such implementations, Part IV contains high-level specifications of correctness of the basic arithmetic instructions of several major industry-standard floating-point architectures, including all details pertaining to the handling of exceptional conditions. Part V illustrates the methodology, applying the preceding theory to the comprehensive verification of a state-of-the-art commercial floating-point unit. All of these results have been formalized in the logic of the ACL2 theorem prover and mechanically checked to ensure their correctness. They are presented here, however, in simple conventional mathematical notation. The book presupposes no familiarity with ACL2, logic design, or any mathematics beyond basic high school algebra. It will be of interest to verification engineers as well as arithmetic circuit designers who appreciate the value of a rigorous approach to their art, and is suitable as a graduate text in computer arithmetic.