This book evaluates the predictive accuracy of the forecasts in a sample of federal environmental impact statements. It examines a major federal attempt to impose rationalistic reforms on government decision makers and the first view of National Environmental Policy Act reforms.
An authoritative and accessible introduction to the concepts and tools needed to make ecology a more predictive science Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science. Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support. Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new data Describes statistical and informatics tools for bringing models and data together, with emphasis on: Quantifying and partitioning uncertainties Dealing with the complexities of real-world data Feedbacks to identifying data needs, improving models, and decision support Numerous hands-on activities in R available online
With the growing number, complexity, and importance of environmental problems come demands to include a full range of intellectual disciplines and scholarly traditions to help define and eventually manage such problems more effectively. Decision Making for the Environment: Social and Behavioral Science Research Priorities is the result of a 2-year effort by 12 social and behavioral scientists, scholars, and practitioners. The report sets research priorities for the social and behavioral sciences as they relate to several different kinds of environmental problems.
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.
This open access book highlights the complexities around making adaptation decisions and building resilience in the face of climate risk. It is based on experiences in sub-Saharan Africa through the Future Climate For Africa (FCFA) applied research programme. It begins by dealing with underlying principles and structures designed to facilitate effective engagement about climate risk, including the robustness of information and the construction of knowledge through co-production. Chapters then move on to explore examples of using climate information to inform adaptation and resilience through early warning, river basin development, urban planning and rural livelihoods based in a variety of contexts. These insights inform new ways to promote action in policy and praxis through the blending of knowledge from multiple disciplines, including climate science that provides understanding of future climate risk and the social science of response through adaptation. The book will be of interest to advanced undergraduate students and postgraduate students, researchers, policy makers and practitioners in geography, environment, international development and related disciplines.
With the growing number, complexity, and importance of environmental problems come demands to include a full range of intellectual disciplines and scholarly traditions to help define and eventually manage such problems more effectively. Decision Making for the Environment: Social and Behavioral Science Research Priorities is the result of a 2-year effort by 12 social and behavioral scientists, scholars, and practitioners. The report sets research priorities for the social and behavioral sciences as they relate to several different kinds of environmental problems.
This book is unique in identifying and presenting tools to environmental decision-makers to help them improve the quality and clarity of their work. These tools range from software to policy approaches, and from environmental databases to focus groups. Equally of value to environmental managers, and students in environmental risk, policy, economics and law.
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.
This book outlines the creative process of making environmental management decisions using the approach called Structured Decision Making. It is a short introductory guide to this popular form of decision making and is aimed at environmental managers and scientists. This is a distinctly pragmatic label given to ways for helping individuals and groups think through tough multidimensional choices characterized by uncertain science, diverse stakeholders, and difficult tradeoffs. This is the everyday reality of environmental management, yet many important decisions currently are made on an ad hoc basis that lacks a solid value-based foundation, ignores key information, and results in selection of an inferior alternative. Making progress – in a way that is rigorous, inclusive, defensible and transparent – requires combining analytical methods drawn from the decision sciences and applied ecology with deliberative insights from cognitive psychology, facilitation and negotiation. The authors review key methods and discuss case-study examples based in their experiences in communities, boardrooms, and stakeholder meetings. The goal of this book is to lay out a compelling guide that will change how you think about making environmental decisions. Visit www.wiley.com/go/gregory/ to access the figures and tables from the book.
Many regulations issued by the U.S. Environmental Protection Agency (EPA) are based on the results of computer models. Models help EPA explain environmental phenomena in settings where direct observations are limited or unavailable, and anticipate the effects of agency policies on the environment, human health and the economy. Given the critical role played by models, the EPA asked the National Research Council to assess scientific issues related to the agency's selection and use of models in its decisions. The book recommends a series of guidelines and principles for improving agency models and decision-making processes. The centerpiece of the book's recommended vision is a life-cycle approach to model evaluation which includes peer review, corroboration of results, and other activities. This will enhance the agency's ability to respond to requirements from a 2001 law on information quality and improve policy development and implementation.