This book describes state-of-the-art approaches to Fog Computing, including the background of innovations achieved in recent years. Coverage includes various aspects of fog computing architectures for Internet of Things, driving reasons, variations and case studies. The authors discuss in detail key topics, such as meeting low latency and real-time requirements of applications, interoperability, federation and heterogeneous computing, energy efficiency and mobility, fog and cloud interplay, geo-distribution and location awareness, and case studies in healthcare and smart space applications.
Industrial internet of things (IIoT) is changing the face of industry by completely redefining the way stakeholders, enterprises, and machines connect and interact with each other in the industrial digital ecosystem. Smart and connected factories, in which all the machinery transmits real-time data, enable industrial data analytics for improving operational efficiency, productivity, and industrial processes, thus creating new business opportunities, asset utilization, and connected services. IIoT leads factories to step out of legacy environments and arcane processes towards open digital industrial ecosystems. Innovations in the Industrial Internet of Things (IIoT) and Smart Factory is a pivotal reference source that discusses the development of models and algorithms for predictive control of industrial operations and focuses on optimization of industrial operational efficiency, rationalization, automation, and maintenance. While highlighting topics such as artificial intelligence, cyber security, and data collection, this book is ideally designed for engineers, manufacturers, industrialists, managers, IT consultants, practitioners, students, researchers, and industrial industry professionals.
Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.
A comprehensive guide to Fog and Edge applications, architectures, and technologies Recent years have seen the explosive growth of the Internet of Things (IoT): the internet-connected network of devices that includes everything from personal electronics and home appliances to automobiles and industrial machinery. Responding to the ever-increasing bandwidth demands of the IoT, Fog and Edge computing concepts have developed to collect, analyze, and process data more efficiently than traditional cloud architecture. Fog and Edge Computing: Principles and Paradigms provides a comprehensive overview of the state-of-the-art applications and architectures driving this dynamic field of computing while highlighting potential research directions and emerging technologies. Exploring topics such as developing scalable architectures, moving from closed systems to open systems, and ethical issues rising from data sensing, this timely book addresses both the challenges and opportunities that Fog and Edge computing presents. Contributions from leading IoT experts discuss federating Edge resources, middleware design issues, data management and predictive analysis, smart transportation and surveillance applications, and more. A coordinated and integrated presentation of topics helps readers gain thorough knowledge of the foundations, applications, and issues that are central to Fog and Edge computing. This valuable resource: Provides insights on transitioning from current Cloud-centric and 4G/5G wireless environments to Fog Computing Examines methods to optimize virtualized, pooled, and shared resources Identifies potential technical challenges and offers suggestions for possible solutions Discusses major components of Fog and Edge computing architectures such as middleware, interaction protocols, and autonomic management Includes access to a website portal for advanced online resources Fog and Edge Computing: Principles and Paradigms is an essential source of up-to-date information for systems architects, developers, researchers, and advanced undergraduate and graduate students in fields of computer science and engineering.
The Smart Cyber Ecosystem for Sustainable Development As the entire ecosystem is moving towards a sustainable goal, technology driven smart cyber system is the enabling factor to make this a success, and the current book documents how this can be attained. The cyber ecosystem consists of a huge number of different entities that work and interact with each other in a highly diversified manner. In this era, when the world is surrounded by many unseen challenges and when its population is increasing and resources are decreasing, scientists, researchers, academicians, industrialists, government agencies and other stakeholders are looking toward smart and intelligent cyber systems that can guarantee sustainable development for a better and healthier ecosystem. The main actors of this cyber ecosystem include the Internet of Things (IoT), artificial intelligence (AI), and the mechanisms providing cybersecurity. This book attempts to collect and publish innovative ideas, emerging trends, implementation experiences, and pertinent user cases for the purpose of serving mankind and societies with sustainable societal development. The 22 chapters of the book are divided into three sections: Section I deals with the Internet of Things, Section II focuses on artificial intelligence and especially its applications in healthcare, whereas Section III investigates the different cyber security mechanisms. Audience This book will attract researchers and graduate students working in the areas of artificial intelligence, blockchain, Internet of Things, information technology, as well as industrialists, practitioners, technology developers, entrepreneurs, and professionals who are interested in exploring, designing and implementing these technologies.
The book aims to integrate the aspects of IoT, Cloud computing and data analytics from diversified perspectives. The book also plans to discuss the recent research trends and advanced topics in the field which will be of interest to academicians and researchers working in this area. Thus, the book intends to help its readers to understand and explore the spectrum of applications of IoT, cloud computing and data analytics. Here, it is also worth mentioning that the book is believed to draw attention on the applications of said technology in various disciplines in order to obtain enhanced understanding of the readers. Also, this book focuses on the researches and challenges in the domain of IoT, Cloud computing and Data analytics from perspectives of various stakeholders.
A practical guide to the design, implementation, evaluation, and deployment of emerging technologies for intelligent IoT applications With the rapid development in artificially intelligent and hybrid technologies, IoT, edge, fog-driven, and pervasive computing techniques are becoming important parts of our daily lives. This book focuses on recent advances, roles, and benefits of these technologies, describing the latest intelligent systems from a practical point of view. Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications is also valuable for engineers and professionals trying to solve practical, economic, or technical problems. With a uniquely practical approach spanning multiple fields of interest, contributors cover theory, applications, and design methodologies for intelligent systems. These technologies are rapidly transforming engineering, industry, and agriculture by enabling real-time processing of data via computational, resource-oriented metaheuristics and machine learning algorithms. As edge/fog computing and associated technologies are implemented far and wide, we are now able to solve previously intractable problems. With chapters contributed by experts in the field, this book: Describes Machine Learning frameworks and algorithms for edge, fog, and pervasive computing Considers probabilistic storage systems and proven optimization techniques for intelligent IoT Covers 5G edge network slicing and virtual network systems that utilize new networking capacity Explores resource provisioning and bandwidth allocation for edge, fog, and pervasive mobile applications Presents emerging applications of intelligent IoT, including smart farming, factory automation, marketing automation, medical diagnosis, and more Researchers, graduate students, and practitioners working in the intelligent systems domain will appreciate this book’s practical orientation and comprehensive coverage. Intelligent IoT is revolutionizing every industry and field today, and Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications provides the background, orientation, and inspiration needed to begin.
As the progression of the internet continues, society is finding easier, quicker ways of simplifying their needs with the use of technology. With the growth of lightweight devices, such as smart phones and wearable devices, highly configured hardware is in heightened demand in order to process the large amounts of raw data that are acquired. Connecting these devices to fog computing can reduce bandwidth and latency for data transmission when associated with centralized cloud solutions and uses machine learning algorithms to handle large amounts of raw data. The risks that accompany this advancing technology, however, have yet to be explored. Architecture and Security Issues in Fog Computing Applications is a pivotal reference source that provides vital research on the architectural complications of fog processing and focuses on security and privacy issues in intelligent fog applications. While highlighting topics such as machine learning, cyber-physical systems, and security applications, this publication explores the architecture of intelligent fog applications enabled with machine learning. This book is ideally designed for IT specialists, software developers, security analysts, software engineers, academicians, students, and researchers seeking current research on network security and wireless systems.
Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students.
This volume offers readers various perspectives and visions for cutting-edge research in ubiquitous healthcare. The topics emphasize large-scale architectures and high performance solutions for smart healthcare, healthcare monitoring using large-scale computing techniques, Internet of Things (IoT) and big data analytics for healthcare, Fog Computing, mobile health, large-scale medical data mining, advanced machine learning methods for mining multidimensional sensor data, smart homes, and resource allocation methods for the BANs. The book contains high quality chapters contributed by leading international researchers working in domains, such as e-Health, pervasive and context-aware computing, cloud, grid, cluster, and big-data computing. We are optimistic that the topics included in this book will provide a multidisciplinary research platform to the researchers, practitioners, and students from biomedical engineering, health informatics, computer science, and computer engineering.