The Focus On Elementary Physics Student Textbook introduces young students to the scientific discipline of physics. Students will learn about force, work, kinds of energy, inertia, friction, mass, chemical energy, electricity, electrons, magnets and magnetic force, light and sound waves, conservation of energy, and more. The Focus On Elementary Physics Student Textbook has ten full-color chapters. Grades K-4.
The Focus On Middle School Geology Student Textbook introduces young students to the scientific discipline of geology. Students will learn about the many branches of geology; the steps in the scientific method; tools and equipment used by geologists; rocks, minerals, and soils—how they are formed and what they are made of; the various layers inside Earth and how they function; the dynamic Earth—plate tectonics and the formation of mountains, volcanoes, and earthquakes; the atmosphere—its layers and composition; the hydrosphere, including the hydrologic cycle, oceans, freshwater, and human interactions; the biosphere—its cycles and ecosystems; magnetism, Earth’s magnetic field, and the magnetosphere; Earth as a system and Earth System Science; and more. The Focus On Middle School Geology Student Textbook has ten full color chapters with many illustrations and includes a glossary and pronunciation guide at the back of the book. Grades 5-8.
The Focus On Middle School Astronomy Student Textbook introduces young students to the scientific discipline of astronomy. Students will learn about the history of astronomy; various astronomical tools, including telescopes, space probes, landers, and rovers; the phases of the Moon and how the Moon affects the Earth; the Sun and solar energy; the planets in our solar system and their characteristics; the Milky Way Galaxy and other galaxies; stars and other celestial bodies; and more. The Focus On Middle School Astronomy Student Textbook has ten full color chapters and includes a glossary and pronunciation guide at the back of the book. Grades 5-8.
In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Physics, 11th Edition provides students with the skills that they need to succeed in this course, by focusing on conceptual understanding; problem solving; and providing real-world applications and relevance. Conceptual Examples, Concepts and Calculations problems, and Check Your Understanding questions help students to understand physics principles. Math Skills boxes, multi-concept problems, and Examples with reasoning steps help students to improve their reasoning skills while solving problems. "The Physics Of" boxes show students how physics principles are relevant to their everyday lives.
En række spørgsmål med svar indenfor bl.a. el-lære, magnetisme, bevægelse, varme, væsker, lys, tyngdekraft, energi, svingninger og atomfysik. Bogen forudsætter viden om fysik
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves