Showing marine ecologists, oceanographers and marine engineers how ocean waters interact with, influence and constrain life in the ocean, this package makes the physical processes intelligible to biologists with a modicum of mathematics. Part I of the book examines classical fluid mechanics such as laminar and turbulent flow, boundary layers, and forces induced by flow. Part II deals with large-scale flows, such as waves, large ocean currents, and tides, which are beyond the scope of classic fluid mechanics. In Part III, the link between hydrodynamics of ocean flows and marine ecology is demonstrated by examples of well-established phenomena and processes. The CD-ROM contains 12 ready-to-use computer programs on the calculation, representation and simulation of various processes.
An environmental interface is defined as a surface between two abiotic or biotic systems, in relative motion and exchanging mass, heat and momentum through biophysical and/or chemical processes. These processes fluctuate temporally and spatially. The book first treats exchange processes occurring at the interfaces between atmosphere and the surface of the sea, and atmosphere and land surface. These exchanges include the effect of vegetation, transport of dust and dispersion of passive substances within the atmosphere. Processes at the environmental interfaces of freshwater, such as gas-transfer at free-surfaces of rivers, advective diffusion of air bubbles in turbulent water flows and boundary-layers phenomena in vegetated open channels are also described. Finally, the book deals with the phenomena that affect transport of material to and from the surface of an organism, including molecular and turbulent diffusion. The relevant issues related to mass transfer to and from benthic plants and animals are further considered in detail. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.
Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow an
This book began life as a series of lectures given to second and third year undergraduates at Oxford University. These lectures were designed to give students insights as to how marine ecosystems functioned, how they were being affected by natural and human interventions, and how we might be able to conserve them and manage them sustainably for the good of people, both recreationally and economically. This book presents 10 chapters, beginning with principles of oceanography important to ecology, through discussions of the magnitude of marine biodiversity and the factors influencing it, the functioning of marine ecosystems at within trophic levels such as primary production, competition and dispersal, to different trophic level interactions such as herbivory, predation and parasitism. The final three chapters look at the more applied aspects of marine ecology, discussion fisheries, human impacts, and management and conservation. Other textbooks covering similar topics tend to treat the topics from the point of view of separate ecosystems, with chapters on reefs, rocks and deep sea. This book however is topic driven as described above, and each chapter makes full use of examples from all appropriate marine ecosystems. The book is illustrated throughout with many full colour diagrams and high quality photographs. The book is aimed at undergraduate and graduate students at colleges and universities, and it is hoped that the many examples from all over the world will provide global relevance and interest. Both authors have long experience of research and teaching in marine ecology. Martin Speight’s first degree was in marine zoology at UCNW Bangor, and he has taught marine ecology and conservation at Oxford for 25 years. His research students study tropical marine ecology from the Caribbean through East Africa to the Far East. Peter Henderson is a Senior Research Associate at the University of Oxford, and is Director of Pisces Conservation in the UK. He has worked on marine and freshwater fisheries, as well as ecological and economic impacts and exploitation of the sea in North and South America as well as Europe.
The book presents a collection of selected papers from the I Workshop of the Venezuelan Society of Fluid Mechanics held on Margarita Island, Venezuela from November 4 to 9, 2012. Written by experts in their respective fields, the contributions are organized into five parts: - Part I Invited Lectures, consisting of full-length technical papers on both computational and experimental fluid mechanics covering a wide range of topics from drops to multiphase and granular flows to astrophysical flows, - Part II Drops, Particles and Waves - Part III Multiphase and Multicomponent Flows - Part IV Atmospheric and Granular Flows - and Part V Turbulent and Astrophysical Flows. The book is intended for upper-level undergraduate and graduate students as well as for physicists, chemists and engineers teaching and working in the field of fluid mechanics and its applications. The contributions are the result of recent advances in theoretical and experimental research in fluid mechanics, encompassing both fundamentals as well as applications to fluid engineering design, including pipelines, turbines, flow separators, hydraulic systems and biological fluid elements, and to granular, environmental and astrophysical flows.
Seagrasses are unique plants; the only group of flowering plants to recolonise the sea. They occur on every continental margin, except Antarctica, and form ecosystems which have important roles in fisheries, fish nursery grounds, prawn fisheries, habitat diversity and sediment stabilisation. Over the last two decades there has been an explosion of research and information on all aspects of seagrass biology. However the compilation of all this work into one book has not been attempted previously. In this book experts in 26 areas of seagrass biology present their work in chapters which are state-of–the-art and designed to be useful to students and researchers alike. The book not only focuses on what has been discovered but what exciting areas are left to discover. The book is divided into sections on taxonomy, anatomy, reproduction, ecology, physiology, fisheries, management, conservation and landscape ecology. It is destined to become the chosen text on seagrasses for any marine biology course.
The study of estuaries and coasts has seen enormous growth in recent years, since changes in these areas have a large effect on the food chain, as well as on the physics and chemistry of the ocean. As the coasts and river banks around the world become more densely populated, the pressure on these ecosystems intensifies, putting a new focus on environmental, socio-economic and policy issues. Written by a team of international expert scientists, under the guidance of Chief Editors Eric Wolanski and Donald McClusky, the Treatise on Estuarine and Coastal Science, Ten Volume Set examines topics in depth, and aims to provide a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Most up-to-date reference for system-based coastal and estuarine science and management, from the inland watershed to the ocean shelf Chief editors have assembled a world-class team of volume editors and contributing authors Approach focuses on the physical, biological, chemistry, ecosystem, human, ecological and economics processes, to show how to best use multidisciplinary science to ensure earth's sustainability Provides a comprehensive scientific resource for all professionals and students in the area of estuarine and coastal science Features up-to-date chapters covering a full range of topics
Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge. The book provides systematic analysis tools and basic skills for study fluid mechanics in natural and constructed environmental flows. As the prediction of changes in free surfaces in rivers, lakes, estuaries and in the ocean directly affects the design of structures that control surface waters, and because planning for the allocation of fresh-water resources in a sustainable manner is an essential goal, this book provides the necessary background and research. - Helps users determine the transfer of solute mass through the air-water interface - Presents tactics on the impact of free shear flow in the environment and how to quantify mixing mechanisms in turbulent jets and wakes - Gives users tactics to predict the fate and transport of contaminants in stratified lakes and estuaries