This title reports on the latest research in the area of aerodynamic efficency of various fixed-wing, flapping wing, and rotary wing concepts. It presents the progress made by over fifty active researchers in the field.
This intriguing book breaks new ground on an emerging subject that has attracted considerable attention: the use of unmanned micro air vehicles (MAVs) to conduct special, limited duration missions. Significant advances in the miniaturization of electronics make it now possible to use vehicles of this type in a detection or surveillance role to carry visual, acoustic, chemical, or biological sensors. Interestingly, many of the advances in MAV technology can be traced directly to annual student competitions, begun in the late 1990s, that use relatively low cost model airplane equipment. The wide variety of configurations entered in these contests and their ongoing success has led to a serious interest in testing the performance of these vehicles for adaptation to practical applications. MAVs present aerodynamic issues unique to their size and the speeds at which they operate. Of particular concern is the aerodynamic efficiency of various fixed wing concepts. Very little information on the performance of low aspect ratio wing planforms existed for this flight regime until MAVs became of interest and the proliferation of fixed wing designs has since expanded. This book presents a brief history of unmanned air vehicles and offers elements of aerodynamics for low aspect ratio wings. Propulsion and the basic concepts for fixed wing MAV design are presented, as is a method for autopilot integration. Three different wing configurations are presented in a series of step-by-step case studies. The goal of the book is to assist both working professionals and students to design, build, and fly MAVs, and do so in a way that will advance the state of the art and lead to the development of even smalleraircraft.
This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Explorer is the world's first flapping wing MAV that is able to fly completely autonomously in unknown environments. The DelFly project started in 2005 and ever since has served as inspiration, not only to many scientific flapping wing studies, but also the design of flapping wing toys. The combination of introductions to relevant fields, practical insights and scientific experiments from the DelFly project make this book a must-read for all flapping wing enthusiasts, be they students, researchers, or engineers.
Morphing Aerospace Vehicles and Structures provides a highly timely presentation of the state-of-the-art, future directions and technical requirements of morphing aircraft. Divided into three sections it addresses morphing aircraft, bio-inspiration, and smart structures with specific focus on the flight control, aerodynamics, bio-mechanics, materials, and structures of these vehicles as well as power requirements and the use of advanced piezo materials and smart actuators. The tutorial approach adopted by the contributors, including underlying concepts and mathematical formulations, unifies the methodologies and tools required to provide practicing engineers and applied researchers with the insight to synthesize morphing air vehicles and morphing structures, as well as offering direction for future research.
Low Reynolds number aerodynamics is important to a number of natural and man-made flyers. Birds, bats, and insects have been of interest to biologists for years, and active study in the aerospace engineering community, motivated by interest in micro air vehicles (MAVs), has been increasing rapidly. The primary focus of this book is the aerodynamics associated with fixed and flapping wings. The book consider both biological flyers and MAVs, including a summary of the scaling laws-which relate the aerodynamics and flight characteristics to a flyer's sizing on the basis of simple geometric and dynamics analyses, structural flexibility, laminar-turbulent transition, airfoil shapes, and unsteady flapping wing aerodynamics. The interplay between flapping kinematics and key dimensionless parameters such as the Reynolds number, Strouhal number, and reduced frequency is highlighted. The various unsteady lift enhancement mechanisms are also addressed, including leading-edge vortex, rapid pitch-up and rotational circulation, wake capture, and clap-and-fling.
Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles