First Papers in Mathematics

First Papers in Mathematics

Author: J. M. Bond

Publisher: Nelson Thornes

Published: 2001

Total Pages: 62

ISBN-13: 9780748761852

DOWNLOAD EBOOK

Includes graded papers that practise the key skills. This work features coverage of the National Curriculum. Answers are included in pull-out sections. This title provides preparation for tackling tests and exams.


Mathematical Writing

Mathematical Writing

Author: Donald E. Knuth

Publisher: Cambridge University Press

Published: 1989

Total Pages: 132

ISBN-13: 9780883850633

DOWNLOAD EBOOK

This book will help those wishing to teach a course in technical writing, or who wish to write themselves.


The Early Mathematics of Leonhard Euler

The Early Mathematics of Leonhard Euler

Author: C. Edward Sandifer

Publisher: American Mathematical Soc.

Published: 2020-07-14

Total Pages: 415

ISBN-13: 1470451808

DOWNLOAD EBOOK

The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) f(x) notation, and the integrating factor in differential equations. The books shows how contributions in diverse fields are related, how number theory relates to series, which, in turn, relate to elliptic integrals and then to differential equations. There are dozens of such strands in this beautiful web of mathematics. At the same time, we see Euler grow in power and sophistication, from a young student when at 18 he published his first work on differential equations (a paper with a serious flaw) to the most celebrated mathematician and scientist of his time. It is a portrait of the world's most exciting mathematics between 1725 and 1741, rich in technical detail, woven with connections within Euler's work and with the work of other mathematicians in other times and places, laced with historical context.


Making Mathematics with Needlework

Making Mathematics with Needlework

Author: sarah-marie belcastro

Publisher: A K Peters/CRC Press

Published: 2008

Total Pages: 214

ISBN-13:

DOWNLOAD EBOOK

"Making Mathematics with Needlework will inspire mathematicians, mathematics educators, and crafters; every chapter has an overview as well as sections on mathematics and mathematics education and detailed instructions for completing the chapter's project. All readers will be able to understand the overview sections, as they include introductions to the various fiber arts as well as summaries of the mathematical content. While the mathematics sections are written for mathematicians, the authors have made a special effort to make their work accessible to lay readers by providing definitions of mathematical terms and many diagrams. The project sections are written for crafters, so that non-mathematician readers can have a tangible experience with mathematical concepts."--BOOK JACKET.


How to Write Mathematics

How to Write Mathematics

Author: Norman Earl Steenrod

Publisher: American Mathematical Soc.

Published: 1973-12-31

Total Pages: 76

ISBN-13: 9780821896785

DOWNLOAD EBOOK

This classic guide contains four essays on writing mathematical books and papers at the research level and at the level of graduate texts. The authors are all well known for their writing skills, as well as their mathematical accomplishments. The first essay, by Steenrod, discusses writing books, either monographs or textbooks. He gives both general and specific advice, getting into such details as the need for a good introduction. The longest essay is by Halmos, and contains many of the pieces of his advice that are repeated even today: In order to say something well you must have something to say; write for someone; think about the alphabet. Halmos's advice is systematic and practical. Schiffer addresses the issue by examining four types of mathematical writing: research paper, monograph, survey, and textbook, and gives advice for each form of exposition. Dieudonne's contribution is mostly a commentary on the earlier essays, with clear statements of where he disagrees with his coauthors. The advice in this small book will be useful to mathematicians at all levels.


A History of Folding in Mathematics

A History of Folding in Mathematics

Author: Michael Friedman

Publisher: Birkhäuser

Published: 2018-05-25

Total Pages: 430

ISBN-13: 3319724878

DOWNLOAD EBOOK

While it is well known that the Delian problems are impossible to solve with a straightedge and compass – for example, it is impossible to construct a segment whose length is cube root of 2 with these instruments – the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 that one can in fact construct a segment of length cube root of 2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few questions immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study on the history of folding in mathematics, spanning from the 16th century to the 20th century, and offers a general study on the ways mathematical knowledge is marginalised, disappears, is ignored or becomes obsolete. In doing so, it makes a valuable contribution to the field of history and philosophy of science, particularly the history and philosophy of mathematics and is highly recommended for anyone interested in these topics.


Disquisitiones Arithmeticae

Disquisitiones Arithmeticae

Author: Carl Friedrich Gauss

Publisher: Springer

Published: 2018-02-07

Total Pages: 491

ISBN-13: 1493975609

DOWNLOAD EBOOK

Carl Friedrich Gauss’s textbook, Disquisitiones arithmeticae, published in 1801 (Latin), remains to this day a true masterpiece of mathematical examination. .


Mathematics and Mathematicians

Mathematics and Mathematicians

Author: Lars Gårding

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 304

ISBN-13: 0821806122

DOWNLOAD EBOOK

This book is about mathematics in Sweden between 1630 and 1950 - from S. Klingenstierna to M. Riesz, T. Carleman, and A. Beurling. It tells the story of how continental mathematics came to Sweden, how it was received, and how it inspired new results. The book contains a biography of Gosta Mittag-Leffler, the father of Swedish mathematics, who introduced the Weierstrassian theory of analytic functions and dominated a golden age from 1880 to 1910. Important results are analyzed and re-proved in modern notation, with explanations of their relations to mathematics at the time. The book treats Backlund transformations, Mittag-Leffler's theorem, the Phragmen-Lindelof theorem and Carleman's contributions to the spectral theorem, quantum mechanics, and the asymptotics of eigenvalues and eigenfunctions.