Focusing of Charged Particles V2

Focusing of Charged Particles V2

Author: Albert Septier

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 487

ISBN-13: 0323148468

DOWNLOAD EBOOK

Focusing of Charged Particles, Volume II presents the aspects of particle optics, including the electron, the ion optical domains, and the accelerator field. This book provides a detailed analysis of the principles of the laws of propagation of beams. Comprised of three parts encompassing three chapters, this volume starts with an overview of how a beam of charged particles traverses a region that is at a uniform, constant, electrostatic potential. This book then discusses the principle of charge repulsion effect by which the space charge of the beam modifies the potential in the region that it traverses. Other chapters examine the general design techniques and performances obtainable for electron guns applicable for use in initiating a beam for linear beam tubes that is given in a condensed form. The last chapter deals with the two stable charged particles that can be accelerated, namely, protons and electrons. This book is a valuable resource to physicists, accelerator experts, and experimenters in search of interactions in the detector target.


First- and Second-order Charged Particle Optics

First- and Second-order Charged Particle Optics

Author:

Publisher:

Published: 1984

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Since the invention of the alternating gradient principle there has been a rapid evolution of the mathematics and physics techniques applicable to charged particle optics. In this publication we derive a differential equation and a matrix algebra formalism valid to second-order to present the basic principles governing the design of charged particle beam transport systems. A notation first introduced by John Streib is used to convey the essential principles dictating the design of such beam transport systems. For example the momentum dispersion, the momentum resolution, and all second-order aberrations are expressed as simple integrals of the first-order trajectories (matrix elements) and of the magnetic field parameters (multipole components) characterizing the system. 16 references, 30 figures.


Charged Particle Optics Theory

Charged Particle Optics Theory

Author: Timothy R. Groves

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 369

ISBN-13: 1482229951

DOWNLOAD EBOOK

Charged Particle Optics Theory: An Introduction identifies the most important concepts of charged particle optics theory, and derives each mathematically from the first principles of physics. Assuming an advanced undergraduate-level understanding of calculus, this book follows a logical progression, with each concept building upon the preceding one. Beginning with a non-mathematical survey of the optical nature of a charged particle beam, the text: Discusses both geometrical and wave optics, as well as the correspondence between them Describes the two-body scattering problem, which is essential to the interaction of a fast charged particle with matter Introduces electron emission as a practical consequence of quantum mechanics Addresses the Fourier transform and the linear second-order differential equation Includes problems to amplify and fill in the theoretical details, with solutions presented separately Charged Particle Optics Theory: An Introduction makes an ideal textbook as well as a convenient reference on the theoretical origins of the optics of charged particle beams. It is intended to prepare the reader to understand the large body of published research in this mature field, with the end result translated immediately to practical application.


Handbook of Charged Particle Optics

Handbook of Charged Particle Optics

Author: Jon Orloff

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 666

ISBN-13: 1420045555

DOWNLOAD EBOOK

With the growing proliferation of nanotechnologies, powerful imaging technologies are being developed to operate at the sub-nanometer scale. The newest edition of a bestseller, the Handbook of Charged Particle Optics, Second Edition provides essential background information for the design and operation of high resolution focused probe instruments. The book’s unique approach covers both the theoretical and practical knowledge of high resolution probe forming instruments. The second edition features new chapters on aberration correction and applications of gas phase field ionization sources. With the inclusion of additional references to past and present work in the field, this second edition offers perfectly calibrated coverage of the field’s cutting-edge technologies with added insight into how they work. Written by the leading research scientists, the second edition of the Handbook of Charged Particle Optics is a complete guide to understanding, designing, and using high resolution probe instrumentation.


The Finite Element Method in Charged Particle Optics

The Finite Element Method in Charged Particle Optics

Author: Anjam Khursheed

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 282

ISBN-13: 146155201X

DOWNLOAD EBOOK

In the span of only a few decades, the finite element method has become an important numerical technique for solving problems in the subject of charged particle optics. The situation has now developed up to the point where finite element simulation software is sold commercially and routinely used in industry. The introduction of the finite element method in charged particle optics came by way of a PHD thesis written by Eric Munro at the University of Cambridge, England, in 1971 [1], shortly after the first papers appeared on its use to solve Electrical Engineering problems in the late sixties. Although many papers on the use of the finite element method in charged particle optics have been published since Munro's pioneering work, its development in this area has not as yet appeared in any textbook. This fact must be understood within a broader context. The first textbook on the finite element method in Electrical Engineering was published in 1983 [2]. At present, there are only a handful of other books that describe it in relation to Electrical Engineering topics [3], let alone charged particle optics. This is but a tiny fraction of the books dedicated to the finite element method in other subjects such as Civil Engineering. The motivation to write this book comes from the need to redress this imbalance. There is also another important reason for writing this book.


Geometrical Charged-Particle Optics

Geometrical Charged-Particle Optics

Author: Harald Rose

Publisher: Springer

Published: 2013-02-02

Total Pages: 519

ISBN-13: 3642321194

DOWNLOAD EBOOK

This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.


Geometrical Charged-Particle Optics

Geometrical Charged-Particle Optics

Author: Harald H. Rose

Publisher: Springer Science & Business Media

Published: 2009

Total Pages: 422

ISBN-13: 3540859152

DOWNLOAD EBOOK

This resource covering all theoretical aspects of modern geometrical charged-particle optics is aimed at anyone involved in the design of electron optical instruments and beam-guiding systems for charged particles.


Principles of Electron Optics, Volume 1

Principles of Electron Optics, Volume 1

Author: Peter W. Hawkes

Publisher: Elsevier

Published: 2017-10-29

Total Pages: 729

ISBN-13: 0081022573

DOWNLOAD EBOOK

Volume one of Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices. The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. A continuation of these topics can be found in volume two, Principles of Electron Optics: Applied Geometrical Optics. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. Offers a fully revised and expanded new edition based on the latest research developments in electron optics Written by the top experts in the field Covers every significant advance in electron optics since the subject originated Contains exceptionally complete and carefully selected references and notes Serves both as a reference and text


Principles of Electron Optics, Volume 2

Principles of Electron Optics, Volume 2

Author: Peter W. Hawkes

Publisher: Academic Press

Published: 2017-12-13

Total Pages: 767

ISBN-13: 0128134054

DOWNLOAD EBOOK

Principles of Electron Optics: Applied Geometrical Optics, Second Edition gives detailed information about the many optical elements that use the theory presented in Volume 1: electrostatic and magnetic lenses, quadrupoles, cathode-lens-based instruments including the new ultrafast microscopes, low-energy-electron microscopes and photoemission electron microscopes and the mirrors found in their systems, Wien filters and deflectors. The chapter on aberration correction is largely new. The long section on electron guns describes recent theories and covers multi-column systems and carbon nanotube emitters. Monochromators are included in the section on curved-axis systems. The lists of references include many articles that will enable the reader to go deeper into the subjects discussed in the text. The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography. Offers a fully revised and expanded new edition based on the latest research developments in electron optics Written by the top experts in the field Covers every significant advance in electron optics since the subject originated Contains exceptionally complete and carefully selected references and notes Serves both as a reference and text