A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
This book collects and coherently presents the research that has been undertaken since the author’s previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.
The annual conference of the European Association for Computer Science Logic (EACSL), CSL 2009, was held in Coimbra (Portugal), September 7–11, 2009. The conference series started as a programme of International Workshops on Computer Science Logic, and then at its sixth meeting became the Annual C- ference of the EACSL. This conference was the 23rd meeting and 18th EACSL conference; it was organized at the Department of Mathematics, Faculty of S- ence and Technology, University of Coimbra. In response to the call for papers, a total of 122 abstracts were submitted to CSL 2009of which 89 werefollowedby a full paper. The ProgrammeCommittee selected 34 papers for presentation at the conference and publication in these proceedings. The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in Computer Science. The awardrecipient for 2009 was Jakob Nordstr ̈ om. Citation of the award, abstract of the thesis, and a biographical sketch of the recipient may be found at the end of the proceedings. The award was sponsored for the years 2007–2009 by Logitech S.A.
From its origins in algebraic number theory, the theory of non-unique factorizations has emerged as an independent branch of algebra and number theory. Focused efforts over the past few decades have wrought a great number and variety of results. However, these remain dispersed throughout the vast literature. For the first time, Non-Unique Factoriza
The study of nonunique factorizations of elements into irreducible elements in commutative rings and monoids has emerged as an independent area of research only over the last 30 years and has enjoyed a recent flurry of activity and advancement. This book presents the proceedings of two recent meetings that gathered key researchers from around the w
This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22–26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prüfer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.