Finite Fields: Theory and Computation

Finite Fields: Theory and Computation

Author: Igor Shparlinski

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 532

ISBN-13: 940159239X

DOWNLOAD EBOOK

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR.


Finite Fields and Applications

Finite Fields and Applications

Author: Gary L. Mullen

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 190

ISBN-13: 0821844180

DOWNLOAD EBOOK

Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.


Finite Fields

Finite Fields

Author: Rudolf Lidl

Publisher: Cambridge University Press

Published: 1997

Total Pages: 784

ISBN-13: 9780521392310

DOWNLOAD EBOOK

This book is devoted entirely to the theory of finite fields.


Lectures on Finite Fields and Galois Rings

Lectures on Finite Fields and Galois Rings

Author: Zhe-Xian Wan

Publisher: World Scientific

Published: 2003

Total Pages: 360

ISBN-13: 9789812385703

DOWNLOAD EBOOK

This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.


Handbook of Finite Fields

Handbook of Finite Fields

Author: Gary L. Mullen

Publisher: CRC Press

Published: 2013-06-17

Total Pages: 1048

ISBN-13: 1439873828

DOWNLOAD EBOOK

Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and


Topics in Galois Fields

Topics in Galois Fields

Author: Dirk Hachenberger

Publisher: Springer Nature

Published: 2020-09-29

Total Pages: 785

ISBN-13: 3030608069

DOWNLOAD EBOOK

This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.


Complex Representations of GL(2,K) for Finite Fields K

Complex Representations of GL(2,K) for Finite Fields K

Author: Ilʹi︠a︡ Iosifovich Pi︠a︡tet︠s︡kiĭ-Shapiro

Publisher: American Mathematical Soc.

Published: 1983

Total Pages: 84

ISBN-13: 0821850199

DOWNLOAD EBOOK

These are lecture notes of a course given at Tel-Aviv University. The aim of these notes is to present the theory of representations of GL(2, K) where K is a finite field. However, the presentation of the material has in mind the theory of infinite dimensional representations of GL(2, K) for local fields K.


Error-correcting Codes and Finite Fields

Error-correcting Codes and Finite Fields

Author: Oliver Pretzel

Publisher: Oxford University Press on Demand

Published: 1996

Total Pages: 341

ISBN-13: 9780192690678

DOWNLOAD EBOOK

This textbook is a reprint of Chapters 1-20 of the original hardback edition. It provides the reader with the tools necessary to implement modern error-processing schemes. The material on algebraic geometry and geometric Goppa codes, which is not part of a standard introductory course on coding theory, has been omitted. The book assumes only a basic knowledge of linear algebra and develops the mathematical theory in parallel with the codes. Central to the text are worked examples whichmotivate and explain the theory. The book is in four parts. The first introduces the basic ideas of coding theory. The second and third cover the theory of finite fields and give a detailed treatment of BCH and Reed-Solomon codes. These parts are linked by their uses of Eulid's algorithm as a central technique. The fourth part treats classical Goppa codes.


Primality Testing and Abelian Varieties Over Finite Fields

Primality Testing and Abelian Varieties Over Finite Fields

Author: Leonard M. Adleman

Publisher: Springer

Published: 2006-11-15

Total Pages: 149

ISBN-13: 3540470212

DOWNLOAD EBOOK

From Gauss to G|del, mathematicians have sought an efficient algorithm to distinguish prime numbers from composite numbers. This book presents a random polynomial time algorithm for the problem. The methods used are from arithmetic algebraic geometry, algebraic number theory and analyticnumber theory. In particular, the theory of two dimensional Abelian varieties over finite fields is developed. The book will be of interest to both researchers and graduate students in number theory and theoretical computer science.


Galois Fields and Galois Rings Made Easy

Galois Fields and Galois Rings Made Easy

Author: Maurice Kibler

Publisher: Elsevier

Published: 2017-09-22

Total Pages: 272

ISBN-13: 0081023510

DOWNLOAD EBOOK

This book constitutes an elementary introduction to rings and fields, in particular Galois rings and Galois fields, with regard to their application to the theory of quantum information, a field at the crossroads of quantum physics, discrete mathematics and informatics.The existing literature on rings and fields is primarily mathematical. There are a great number of excellent books on the theory of rings and fields written by and for mathematicians, but these can be difficult for physicists and chemists to access.This book offers an introduction to rings and fields with numerous examples. It contains an application to the construction of mutually unbiased bases of pivotal importance in quantum information. It is intended for graduate and undergraduate students and researchers in physics, mathematical physics and quantum chemistry (especially in the domains of advanced quantum mechanics, quantum optics, quantum information theory, classical and quantum computing, and computer engineering).Although the book is not written for mathematicians, given the large number of examples discussed, it may also be of interest to undergraduate students in mathematics. - Contains numerous examples that accompany the text - Includes an important chapter on mutually unbiased bases - Helps physicists and theoretical chemists understand this area of mathematics